--- library_name: transformers language: - yo license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Small Naija results: [] --- # Whisper Small Naija This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5707 - Wer: 47.7271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.4056 | 0.1054 | 250 | 1.4307 | 78.3916 | | 0.9509 | 0.2108 | 500 | 1.0383 | 71.7728 | | 0.7805 | 0.3162 | 750 | 0.8800 | 65.6676 | | 0.6558 | 0.4216 | 1000 | 0.7990 | 62.0093 | | 0.6439 | 0.5270 | 1250 | 0.7510 | 64.0119 | | 0.5898 | 0.6324 | 1500 | 0.7163 | 58.3060 | | 0.5943 | 0.7378 | 1750 | 0.6829 | 57.5576 | | 0.5335 | 0.8432 | 2000 | 0.6615 | 56.5056 | | 0.528 | 0.9486 | 2250 | 0.6344 | 54.6675 | | 0.4149 | 1.0540 | 2500 | 0.6291 | 54.5847 | | 0.3842 | 1.1594 | 2750 | 0.6208 | 53.1334 | | 0.3883 | 1.2648 | 3000 | 0.6095 | 47.0400 | | 0.362 | 1.3702 | 3250 | 0.6022 | 53.3288 | | 0.3747 | 1.4755 | 3500 | 0.5925 | 49.1806 | | 0.3457 | 1.5809 | 3750 | 0.5834 | 48.9277 | | 0.3529 | 1.6863 | 4000 | 0.5780 | 49.6644 | | 0.3579 | 1.7917 | 4250 | 0.5735 | 51.2159 | | 0.3446 | 1.8971 | 4500 | 0.5695 | 52.3765 | | 0.319 | 2.0025 | 4750 | 0.5670 | 50.8363 | | 0.256 | 2.1079 | 5000 | 0.5707 | 47.7271 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.0.1+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1