oddadmix commited on
Commit
bef02ec
·
1 Parent(s): 292f732

Upload PPO LunarLander-v2 trained agent 15000000 32 ENV

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -55.42 +/- 81.24
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -159.93 +/- 45.55
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59f27019d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59f2701a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59f2701af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59f2701b80>", "_build": "<function ActorCriticPolicy._build at 0x7f59f2701c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f59f2701ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f59f2701d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59f2701dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f59f2701e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59f2701ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59f2701f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59f2709040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f59f27085c0>"}, "verbose": true, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704670786281626727, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC2sLT83BVm+zI8TvGbtTryvAEw+MdwePQAAgD8AAAAAmqrjvYVDtrmaFf+6dNZYth0L3TrvtxQ6AACAPwAAgD8AXN48cfknOrIiDL2tvy28QPm7OLNumzsAAIA/AACAP+b79D3dR0o/fvfzPAa7YL7RD889js8nvgAAAAAAAAAAzfuNveEa1zmWTQo99bBTvatE2zvChIe9AAAAAAAAAACzh8u9CtdsuU4PhL3Ljdi8O5iHO8rxoD0AAAAAAAAAAGaVj72C9rs/LkXKvrwn+7xYRnS9QBQZvgAAAAAAAAAAnlEMP3fewL2PjJk93lhKvEBAtbxmy0K9AAAAAAAAgD+9n4I+yQyUPwg2Gz++Mpq+AfDLPR5G5z0AAAAAAAAAAJ0uzD7hM4I9yM/IvcJUjrwzNJs9mlvHPQAAgD8AAAAAU5QbPzzqtb1muF87Cwq9PKQmCz2IJ9S9AACAPwAAgD86mdY+oQN5vYPr7jxWIFS8xoL2PJ8XC70AAAAAAACAP03ts72PBXA7fQsrPedU0jrX5+O7DiofPAAAAAAAAAAAc+2XvfMvmj5CX2a+F3e/vl6Ohj7wYom+AAAAAAAAAACqxbg+ABThvQhz7D7fFaq9smXzvm0RRD4AAAAAAACAP03T5j5AMAG+2/aUvdM2aTxb2Dw9Ab5APQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFMZIVuaWoqMAWyUTegDjAF0lEdAlyQTcM3IdXV9lChoBkdAU5CXb/Ot4mgHTegDaAhHQJcxVQUHpr11fZQoaAZHQFXaAKv3ai9oB03oA2gIR0CXSGhNdqtYdX2UKGgGR8BKtqmbb1yvaAdLw2gIR0CXWDmkFfRedX2UKGgGR0BTstUXHim3aAdN6ANoCEdAl3Jf24/eL3V9lChoBkdAQO6+QEIPb2gHTegDaAhHQJd2oLCvX9R1fZQoaAZHQFCwfdRBNVRoB03oA2gIR0CXhhAEt/WldX2UKGgGR0BZYRacI7eVaAdN6ANoCEdAl4Z0AHVwxXV9lChoBke/yK4YrJ8v3GgHTegDaAhHQJeH55TqB3B1fZQoaAZHQFAGKP4mCy1oB03oA2gIR0CXiKXDm8ujdX2UKGgGR0BUy3RsuWa+aAdN6ANoCEdAl5eGnfl6q3V9lChoBkfAPys/t6X0G2gHS9VoCEdAl5osQNCqqHV9lChoBkdAQFZFuvUz9GgHTegDaAhHQJedpHNHH3l1fZQoaAZHQFQveLNwBHVoB03oA2gIR0CXnn2v0RODdX2UKGgGR0AzL0eEIw/QaAdL8GgIR0CXqtsmOU+tdX2UKGgGR0BMxVX/5tWNaAdN6ANoCEdAl64X/HYHxHV9lChoBkfAQ9iimEXcg2gHS9NoCEdAl7T2jCYTkHV9lChoBkdAW5/iGWUr1GgHTegDaAhHQJe73JV81Gd1fZQoaAZHwFlrzdk8RthoB030AWgIR0CXv6J/oaDPdX2UKGgGR0BOn9aUzKs/aAdN6ANoCEdAl8DhVlwtKHV9lChoBkdASk+PcSGrS2gHTegDaAhHQJfEIm0E5hl1fZQoaAZHQEnctA9mpVFoB0vHaAhHQJfGsWznied1fZQoaAZHQFJ5Whh6SkloB03oA2gIR0CXydGSpzcRdX2UKGgGR8A3FlruYx+KaAdLt2gIR0CX1TP/aQFLdX2UKGgGR0BQo+6mO2iMaAdN6ANoCEdAl+kiLyc0+HV9lChoBkdAOVnIZIg/1WgHTegDaAhHQJf3RXYDklx1fZQoaAZHwCiAKQaJhv1oB03oA2gIR0CYIAoLG7z1dX2UKGgGR0BQ+dzfaYeDaAdN6ANoCEdAmCBwPNFBp3V9lChoBkc/9DSF49ovjGgHTegDaAhHQJgh6l67dzp1fZQoaAZHQC6XBk7OmixoB03oA2gIR0CYNtLSuyNXdX2UKGgGR0BTEJA6dUbUaAdN6ANoCEdAmDrvGyX2NHV9lChoBkdAWKanUDuBtmgHTegDaAhHQJg77oxHoX91fZQoaAZHQEuiuvllsgxoB03oA2gIR0CYTrtIkJKKdX2UKGgGR0BeCrUkOZssaAdN6ANoCEdAmFcQnQY1pHV9lChoBkdAQhD+o99tuWgHS85oCEdAmF4Pq1PWQXV9lChoBkdAR+5IFvAGjmgHTegDaAhHQJhelwJgLJF1fZQoaAZHQFCG2VVxS51oB03oA2gIR0CYZDygPEsKdX2UKGgGR0BNmvw/gR9PaAdN6ANoCEdAmGgX4O+ZgHV9lChoBkdATP/VqesgdWgHTegDaAhHQJhrXk7wKBx1fZQoaAZHQELrzgdfb9JoB03oA2gIR0CYbtFpPAO8dX2UKGgGR0BTQcynDR+jaAdN6ANoCEdAmHsNN8E3bXV9lChoBkdAHQyfthNM5GgHS+5oCEdAmI4P3vhIfHV9lChoBkdAUnpMZgogFGgHTegDaAhHQJiOPkq+ajN1fZQoaAZHQCVTQ9ic5KhoB0vIaAhHQJiPwH8jzI51fZQoaAZHwGygHO8kD6poB01NAWgIR0CYkmaFmFrVdX2UKGgGR0BQX1pGnXNDaAdN6ANoCEdAmJpohUzbe3V9lChoBkfAMMyiEg4ffWgHS7VoCEdAmKWtYjjaPHV9lChoBke/9pYSxqwhXGgHS/hoCEdAmK+upS75EnV9lChoBkfAZRwyk9ECvGgHS8FoCEdAmLYG3BpHqnV9lChoBkdAW0H2WY4Qz2gHTegDaAhHQJi8zW9US7J1fZQoaAZHQFlhwXqJMxpoB03oA2gIR0CYvR6y0KJEdX2UKGgGR0BTWJpWV/tqaAdN6ANoCEdAmL5J8rqdH3V9lChoBkfAaKMSYgJTl2gHS+hoCEdAmMf/8l5WzXV9lChoBkdAVZ2UILPUrmgHTegDaAhHQJjPJrnDBM11fZQoaAZHQFFw2OyVv/BoB03oA2gIR0CY0oNbTtsvdX2UKGgGR0BQA+T7l7tzaAdN6ANoCEdAmOP6GtZFHHV9lChoBkdAQtAhUzbeuWgHTegDaAhHQJjrLk3juKJ1fZQoaAZHQGEPxYA80UJoB03oA2gIR0CY8WyMDOkddX2UKGgGR0BTYF49ovi+aAdN6ANoCEdAmPchgeA/cHV9lChoBkdAUr5jWkJrtWgHTegDaAhHQJj9xGqgh8p1fZQoaAZHQFbX8RtgrpdoB03oA2gIR0CZECNZvDP4dX2UKGgGR8AKb4xk/bCaaAdNcAJoCEdAmRBw6IWP93V9lChoBkdAVKgN7SiM52gHTegDaAhHQJkmeFUQ0411fZQoaAZHQFcWPppvgm9oB03oA2gIR0CZKZv3rUsndX2UKGgGR8BSErwnYxtYaAdNPQFoCEdAmUi5MlC1JHV9lChoBkdAQnMHUtqYZ2gHTegDaAhHQJlMsWykbgl1fZQoaAZHQFGDb5uZThpoB03oA2gIR0CZW8Sh8IAwdX2UKGgGR0BNKSFPBSDRaAdN6ANoCEdAmVwj4+KTCHV9lChoBkdAOmInv2GqP2gHTegDaAhHQJlde2UjcEh1fZQoaAZHwDfiNR3u/lBoB03oA2gIR0CZaJyBkI5YdX2UKGgGR0BYfDLbHp8naAdN6ANoCEdAmXBm3azu4XV9lChoBkdANcRgNPP9k2gHTegDaAhHQJlz3WmP5pJ1fZQoaAZHwEOGhZha1TloB0vpaAhHQJl/+Y5T6zp1fZQoaAZHQFIUAC4jKPpoB03oA2gIR0CZhqMn7YTTdX2UKGgGR0BRvl/tpmEoaAdN6ANoCEdAmY5nT3IuG3V9lChoBkdAS0cPYnOSn2gHTegDaAhHQJmVMMDwH7h1fZQoaAZHQD2Tn1WbPQhoB03oA2gIR0CZmy1vVEuydX2UKGgGR0BARYnF5v9+aAdN6ANoCEdAmaKJ0wJw9HV9lChoBkdAOSe7+T/yXmgHS+1oCEdAmbMy39aUzXV9lChoBkdAWivRBu4wy2gHTegDaAhHQJm2r0RODap1fZQoaAZHQFAbn4O+ZgJoB03oA2gIR0CZx4zgdfb9dX2UKGgGR0BTE7RF7UobaAdN6ANoCEdAmdJ/yPMjeXV9lChoBkfAUVj3Dej2z2gHS9hoCEdAmeHrNKRMe3V9lChoBkdAUtn3oLXtjWgHTegDaAhHQJnz4OEug6F1fZQoaAZHQEIMAYpDu0FoB03oA2gIR0CZ98PyCnP3dX2UKGgGR0BUeQksz2vjaAdN6ANoCEdAmgYfMGHHm3V9lChoBkfANaqmXPZ7HGgHTegDaAhHQJoH3z4DcM51fZQoaAZHQEpA2YOUdJdoB03oA2gIR0CaE33xWkrPdX2UKGgGR8BBSixFAmiQaAdN6ANoCEdAmhuCdBjWkXV9lChoBkdAUc5fKISDiGgHTegDaAhHQJofHehwl0J1fZQoaAZHQFIjeRPoFFFoB03oA2gIR0CaKylAeJYUdX2UKGgGR0BbfC/oJRfnaAdN6ANoCEdAmjFHMpw0f3V9lChoBkfAbBQ6RQrMDGgHTYkDaAhHQJo2L7pFCsx1fZQoaAZHQFPXn/1g6U9oB03oA2gIR0CaPhfzz3AVdX2UKGgGR8BLtWv0RODbaAdNJwFoCEdAmj9sGLUCrHV9lChoBkdAUl9ttQ9A5mgHTegDaAhHQJpKA9LYf4h1fZQoaAZHQFCHE6kqMFVoB03oA2gIR0CaWVa2F36idX2UKGgGR8BwUkdFOO81aAdNEANoCEdAmlx69XcQAnV9lChoBkdAWPdmukk8imgHTegDaAhHQJproH9m6Gx1fZQoaAZHQFNec4YJmd1oB03oA2gIR0Cabr+fAbhndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.99999, "gae_lambda": 0.999, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.19.0-45-generic-x86_64-with-glibc2.31 # 46~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 7 15:06:04 UTC 20", "Python": "3.9.16", "Stable-Baselines3": "2.0.0a5", "PyTorch": "1.12.1+cu116", "GPU Enabled": "True", "Numpy": "1.23.4", "Cloudpickle": "2.2.0", "Gymnasium": "0.28.1"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f649f0bd9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f649f0bda60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f649f0bdaf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f649f0bdb80>", "_build": "<function ActorCriticPolicy._build at 0x7f649f0bdc10>", "forward": "<function ActorCriticPolicy.forward at 0x7f649f0bdca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f649f0bdd30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f649f0bddc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f649f0bde50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f649f0bdee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f649f0bdf70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f649f0c5040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f649f0c37c0>"}, "verbose": true, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704673865209088971, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNbszwche4+IlbMPkRMH74f6pK+3RuhPgAAAAAAAAAAxisKvhGEKj4XIJY+JoGCvZuIBL+jyGY+AAAAAAAAAAAmtIw92oKpP8SIuT6iA1K+mnwJveUIf7sAAAAAAAAAAO2nP76KfZc/Mg3yPuh/hr7945G9eObYPgAAAAAAAAAAJnCkPQJupT4yllQ+TJDSvdjoRr3ivlk+AAAAAAAAAADgzim+U0//Pt4vArwks0q+tz7hPVGtRL0AAAAAAAAAAE3A4T32yAk5pRKJO6omJblEidk77S0tuAAAAAAAAIA/84qGPQUvjj9uzNy9w152vc0VYb58PQm+AAAAAAAAAABNz04915NsuYX77Trzp1U1a64Huh6OCroAAIA/AACAP7Mm1j3hyJ26C7R2vBbIkTlTdoi72xF/ugAAgD8AAIA/ZjB7PBQgn7qIepm6VRpqvBPajjoCxU49AACAPwAAgD+a6yQ+sCyzP84b4T7ZbKK+3We4PrGmrj4AAAAAAAAAAPp1Ez7oT+s+7FwduFlpS77NYfG+1gstvgAAAAAAAAAAzfrXPKQqWbtFMis9QZQRPRHKbjxlwfO9AACAPwAAgD8AMJM8109Qu8JpRb2N2l+9Gs+IvCpYNL4AAIA/AACAPyZ+S74f1ay5G/Q0u27XhLn+qeU6UNVaOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCWbyc0+C9SMAWyUS3KMAXSUR0Ca1YYPGyX2dX2UKGgGR0BAegX2ugYhaAdN6ANoCEdAmtbtYwIt2HV9lChoBkdAUykT0xubZ2gHTegDaAhHQJrsHONYKY11fZQoaAZHQCmYfGMn7YVoB0vuaAhHQJr1Wq2jO9p1fZQoaAZHQETjnuiN83NoB03oA2gIR0Ca+h8zyjHodX2UKGgGR0BPNqC6H0sfaAdN6ANoCEdAmxA5QtSQ5nV9lChoBkdAJmS4FzMibGgHS8xoCEdAmx43DWK/EnV9lChoBkdASDr1qWTouGgHTegDaAhHQJsmKD9Oymh1fZQoaAZHQEKLvoePq9poB03oA2gIR0CbMoY4hllLdX2UKGgGR0BLLmgBcRlIaAdN6ANoCEdAm0Jcq4H5anV9lChoBkdAVeEzqKP4mGgHTegDaAhHQJtICqzZ6D51fZQoaAZHwCsRE8aGYa5oB0vraAhHQJtK/0ulGgB1fZQoaAZHQFQZMtbs4T9oB03oA2gIR0CbS+BAfMfSdX2UKGgGR0A9cPWQOnVHaAdN6ANoCEdAm1q42XLNfXV9lChoBkdAT6pCjUNKAmgHTegDaAhHQJtgBHXmNip1fZQoaAZHwDkeMBIWgvloB03oA2gIR0CbZwkv9LpSdX2UKGgGR0BbEDF+/gzhaAdN6ANoCEdAm2nUrK/203V9lChoBkfALlFByCFsYWgHTXMBaAhHQJtwjwF1SwZ1fZQoaAZHQDWKcf/3nIRoB03oA2gIR0CbdRUGmk30dX2UKGgGR0A8QKwpvxYraAdN6ANoCEdAm4KTfek563V9lChoBkdAU1M4iosI3WgHTegDaAhHQJuD9Ixxkup1fZQoaAZHwDsgPAfuCwtoB01FAWgIR0CbkLKYAsCldX2UKGgGR8BC3gJC0F8paAdL3GgIR0CbkcZQHiWFdX2UKGgGR0A+z4Bmwqy4aAdN6ANoCEdAm5fqK1og3nV9lChoBkdATVgXAM2FWWgHTegDaAhHQJugkiUxEfF1fZQoaAZHP/MKpDNQj2VoB00QAWgIR0CbqMW43FUAdX2UKGgGR8BvIEb3oLXuaAdNHgJoCEdAm6jp+YtxuXV9lChoBkfAYQx8k2P1c2gHTaIBaAhHQJupnQJHAh11fZQoaAZHQEocFoL5RCRoB03oA2gIR0CbtqCfHxSYdX2UKGgGR8BQ+vywwCbMaAdNQQFoCEdAm8AEliSaE3V9lChoBkdABcxmCiAUcmgHTQsBaAhHQJvR2dTYNAl1fZQoaAZHQFHzwiqyWzFoB03oA2gIR0Cb01n5SFXadX2UKGgGR0BFHj+BH09RaAdN6ANoCEdAm+HSCaqjrXV9lChoBkfAJxdJz1bqyGgHTegDaAhHQJvmgjyFwkx1fZQoaAZHQEwETJQtSQ5oB03oA2gIR0Cb6P3eenQ6dX2UKGgGR0A6Rci4axX5aAdN6ANoCEdAm+m0YsNDt3V9lChoBkfARRh+lTFVDWgHTegDaAhHQJvqh29tdiV1fZQoaAZHQFSiJul41P5oB03oA2gIR0CcBaR/EwWWdX2UKGgGR0BFs690zTF3aAdN6ANoCEdAnCVVCb+cY3V9lChoBkfAZtEFmFrVOWgHTVICaAhHQJwotPRArx11fZQoaAZHQFCknYg7o0RoB03oA2gIR0CcNh6F/QSjdX2UKGgGR8AYjJIUahpQaAdN6ANoCEdAnD5/qcEvCnV9lChoBkdAVSt2hZha1WgHTegDaAhHQJxIaCsfaHt1fZQoaAZHQCXWpEQXhwVoB03oA2gIR0CcUbwLVnVYdX2UKGgGR0BOjLpiZv1laAdN6ANoCEdAnFHfxx1gY3V9lChoBkdAWrwRe1KGtmgHTegDaAhHQJxhBr9ETg51fZQoaAZHwCkdS0jTrmhoB0vWaAhHQJxqE2AG0NV1fZQoaAZHQFMwH6uW8h9oB03oA2gIR0CcfpHuJDVpdX2UKGgGR8AxRD6FdszmaAdN6ANoCEdAnIAMjJMg2nV9lChoBkdARSG+IuXeFmgHTegDaAhHQJyOo4ku6Et1fZQoaAZHwGxxVjy4FzNoB00TAmgIR0CcjuyNGViXdX2UKGgGRz+ntnf2saKlaAdN6ANoCEdAnJNqNhmXgXV9lChoBkfAZ/bdZ7ojfWgHTdQDaAhHQJyUl3cHnlp1fZQoaAZHQDgfJA+pwS9oB03oA2gIR0CclcABT4tZdX2UKGgGR0BOkuuq3mV8aAdN6ANoCEdAnJZcQmNR33V9lChoBkfAbeo3zcynDWgHTWgCaAhHQJytb1kDp1R1fZQoaAZHQFRRtzCDVYpoB03oA2gIR0CcsRK3/givdX2UKGgGR8BvgdCb+cYqaAdN9AFoCEdAnLi+fh/AkHV9lChoBkfAM41cD8tPHmgHS9poCEdAnLwmWIGhVXV9lChoBkfAUNOesgdOqWgHS+VoCEdAnL4J1mrbQHV9lChoBkdAEJAMlTm4iGgHTTwBaAhHQJzGRSjxkNF1fZQoaAZHQE1lYkmhM8JoB03oA2gIR0Ccyf7xusLfdX2UKGgGR0BWFhUipvP1aAdN6ANoCEdAnMyPhAGB4HV9lChoBkfAcGC53Tuv2WgHTT8BaAhHQJzYHNMXaal1fZQoaAZHwFPn+N96TntoB0v2aAhHQJzdiF/QSjB1fZQoaAZHwDHd4QjD8+BoB0vJaAhHQJzgU2pAD7t1fZQoaAZHwDCbQpnYg7poB03oA2gIR0Cc7VQr+YMOdX2UKGgGR0BO70liSaE0aAdN6ANoCEdAnO1z+m3vyHV9lChoBkdAUWJhG6PKdWgHTegDaAhHQJ0D9qM3qA11fZQoaAZHwGTrfjbSJCVoB03AAmgIR0CdC2HsC1Z1dX2UKGgGR0BLVcB2fTTfaAdL7GgIR0CdEDNvwVj7dX2UKGgGR0A4lw6ySmqHaAdN6ANoCEdAnRYsRpUPx3V9lChoBkfAFF0UGmk30mgHTegDaAhHQJ0XcQOFxn51fZQoaAZHwCRq4lQdjoZoB02gAWgIR0CdHl5y2hIwdX2UKGgGR8A//nZ00WM1aAdLzmgIR0CdI7w6ySmqdX2UKGgGR0BINdZRsMy8aAdN6ANoCEdAnSPz5O8CgnV9lChoBkfAMHrwrlNlAmgHTegDaAhHQJ0kL4k/r0J1fZQoaAZHQCxHgtOEdvNoB03oA2gIR0CdKJ/wRXfZdX2UKGgGR0BFbjSgGr0baAdLxmgIR0CdKKVrylN2dX2UKGgGR8AjLGKAJ9iMaAdLymgIR0CdMj2cawUydX2UKGgGR8AzNZof0VafaAdL2mgIR0CdThuQIUrTdX2UKGgGR0BVXy5mRNh3aAdN6ANoCEdAnVDmhdt2tHV9lChoBkdAWFv8Muvll2gHTegDaAhHQJ1VMy0rsjV1fZQoaAZHQEMydqcmShdoB03oA2gIR0CdZSrGza9LdX2UKGgGR0BZs0nkT6BRaAdN6ANoCEdAnWgQFs54nnV9lChoBkdASRJmqYJE6WgHTegDaAhHQJ11kdq+Jxh1fZQoaAZHQFQkg5zYEntoB03oA2gIR0Cde3Gff4yodX2UKGgGR8BFBjjR2KVIaAdNQgFoCEdAnYP4SpR4yHV9lChoBkfAQRmS+xnnMmgHTegDaAhHQJ2Lav/zasZ1fZQoaAZHQDQH5mAbyYpoB00KAWgIR0CdjvGT9sJqdX2UKGgGR0BT83os7MgVaAdN6ANoCEdAnbJ5F1B+nnV9lChoBkdANeVmSQo1DWgHTegDaAhHQJ25XYraufV1fZQoaAZHQEtGSFoL5RFoB03oA2gIR0Cdw3KNyYG/dX2UKGgGR8Ad5MFlkH2RaAdNSQFoCEdAncPMD8tPHnV9lChoBkdANAX/5tWMj2gHTegDaAhHQJ3J7d0q6OJ1fZQoaAZHwBSppFkQPI5oB03oA2gIR0Cdyi0EHMUzdX2UKGgGR8BTKzasZHd5aAdN6ANoCEdAnc9y9h7VrnV9lChoBkdAVYaLdepn6GgHTegDaAhHQJ3PfOu7pV11fZQoaAZHQDck+u/1xsFoB03oA2gIR0Cd2fam4y44dX2UKGgGR8BD4+z2OAAiaAdLgGgIR0Cd226jnFHbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.99999, "gae_lambda": 0.999, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.19.0-45-generic-x86_64-with-glibc2.31 # 46~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 7 15:06:04 UTC 20", "Python": "3.9.16", "Stable-Baselines3": "2.0.0a5", "PyTorch": "1.12.1+cu116", "GPU Enabled": "True", "Numpy": "1.23.4", "Cloudpickle": "2.2.0", "Gymnasium": "0.28.1"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:46139d13014a143626e028a29819059d208e3c60920cb1c1533d940898a0dfd3
3
- size 146882
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a2730d596c66db22b0f789baa91b261906e8bbbf4582402a5ea9de10083ffdd
3
+ size 146881
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59f27019d0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59f2701a60>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59f2701af0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59f2701b80>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f59f2701c10>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f59f2701ca0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f59f2701d30>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59f2701dc0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f59f2701e50>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59f2701ee0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59f2701f70>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59f2709040>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f59f27085c0>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1704670786281626727,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC2sLT83BVm+zI8TvGbtTryvAEw+MdwePQAAgD8AAAAAmqrjvYVDtrmaFf+6dNZYth0L3TrvtxQ6AACAPwAAgD8AXN48cfknOrIiDL2tvy28QPm7OLNumzsAAIA/AACAP+b79D3dR0o/fvfzPAa7YL7RD889js8nvgAAAAAAAAAAzfuNveEa1zmWTQo99bBTvatE2zvChIe9AAAAAAAAAACzh8u9CtdsuU4PhL3Ljdi8O5iHO8rxoD0AAAAAAAAAAGaVj72C9rs/LkXKvrwn+7xYRnS9QBQZvgAAAAAAAAAAnlEMP3fewL2PjJk93lhKvEBAtbxmy0K9AAAAAAAAgD+9n4I+yQyUPwg2Gz++Mpq+AfDLPR5G5z0AAAAAAAAAAJ0uzD7hM4I9yM/IvcJUjrwzNJs9mlvHPQAAgD8AAAAAU5QbPzzqtb1muF87Cwq9PKQmCz2IJ9S9AACAPwAAgD86mdY+oQN5vYPr7jxWIFS8xoL2PJ8XC70AAAAAAACAP03ts72PBXA7fQsrPedU0jrX5+O7DiofPAAAAAAAAAAAc+2XvfMvmj5CX2a+F3e/vl6Ohj7wYom+AAAAAAAAAACqxbg+ABThvQhz7D7fFaq9smXzvm0RRD4AAAAAAACAP03T5j5AMAG+2/aUvdM2aTxb2Dw9Ab5APQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,7 +45,7 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFMZIVuaWoqMAWyUTegDjAF0lEdAlyQTcM3IdXV9lChoBkdAU5CXb/Ot4mgHTegDaAhHQJcxVQUHpr11fZQoaAZHQFXaAKv3ai9oB03oA2gIR0CXSGhNdqtYdX2UKGgGR8BKtqmbb1yvaAdLw2gIR0CXWDmkFfRedX2UKGgGR0BTstUXHim3aAdN6ANoCEdAl3Jf24/eL3V9lChoBkdAQO6+QEIPb2gHTegDaAhHQJd2oLCvX9R1fZQoaAZHQFCwfdRBNVRoB03oA2gIR0CXhhAEt/WldX2UKGgGR0BZYRacI7eVaAdN6ANoCEdAl4Z0AHVwxXV9lChoBke/yK4YrJ8v3GgHTegDaAhHQJeH55TqB3B1fZQoaAZHQFAGKP4mCy1oB03oA2gIR0CXiKXDm8ujdX2UKGgGR0BUy3RsuWa+aAdN6ANoCEdAl5eGnfl6q3V9lChoBkfAPys/t6X0G2gHS9VoCEdAl5osQNCqqHV9lChoBkdAQFZFuvUz9GgHTegDaAhHQJedpHNHH3l1fZQoaAZHQFQveLNwBHVoB03oA2gIR0CXnn2v0RODdX2UKGgGR0AzL0eEIw/QaAdL8GgIR0CXqtsmOU+tdX2UKGgGR0BMxVX/5tWNaAdN6ANoCEdAl64X/HYHxHV9lChoBkfAQ9iimEXcg2gHS9NoCEdAl7T2jCYTkHV9lChoBkdAW5/iGWUr1GgHTegDaAhHQJe73JV81Gd1fZQoaAZHwFlrzdk8RthoB030AWgIR0CXv6J/oaDPdX2UKGgGR0BOn9aUzKs/aAdN6ANoCEdAl8DhVlwtKHV9lChoBkdASk+PcSGrS2gHTegDaAhHQJfEIm0E5hl1fZQoaAZHQEnctA9mpVFoB0vHaAhHQJfGsWznied1fZQoaAZHQFJ5Whh6SkloB03oA2gIR0CXydGSpzcRdX2UKGgGR8A3FlruYx+KaAdLt2gIR0CX1TP/aQFLdX2UKGgGR0BQo+6mO2iMaAdN6ANoCEdAl+kiLyc0+HV9lChoBkdAOVnIZIg/1WgHTegDaAhHQJf3RXYDklx1fZQoaAZHwCiAKQaJhv1oB03oA2gIR0CYIAoLG7z1dX2UKGgGR0BQ+dzfaYeDaAdN6ANoCEdAmCBwPNFBp3V9lChoBkc/9DSF49ovjGgHTegDaAhHQJgh6l67dzp1fZQoaAZHQC6XBk7OmixoB03oA2gIR0CYNtLSuyNXdX2UKGgGR0BTEJA6dUbUaAdN6ANoCEdAmDrvGyX2NHV9lChoBkdAWKanUDuBtmgHTegDaAhHQJg77oxHoX91fZQoaAZHQEuiuvllsgxoB03oA2gIR0CYTrtIkJKKdX2UKGgGR0BeCrUkOZssaAdN6ANoCEdAmFcQnQY1pHV9lChoBkdAQhD+o99tuWgHS85oCEdAmF4Pq1PWQXV9lChoBkdAR+5IFvAGjmgHTegDaAhHQJhelwJgLJF1fZQoaAZHQFCG2VVxS51oB03oA2gIR0CYZDygPEsKdX2UKGgGR0BNmvw/gR9PaAdN6ANoCEdAmGgX4O+ZgHV9lChoBkdATP/VqesgdWgHTegDaAhHQJhrXk7wKBx1fZQoaAZHQELrzgdfb9JoB03oA2gIR0CYbtFpPAO8dX2UKGgGR0BTQcynDR+jaAdN6ANoCEdAmHsNN8E3bXV9lChoBkdAHQyfthNM5GgHS+5oCEdAmI4P3vhIfHV9lChoBkdAUnpMZgogFGgHTegDaAhHQJiOPkq+ajN1fZQoaAZHQCVTQ9ic5KhoB0vIaAhHQJiPwH8jzI51fZQoaAZHwGygHO8kD6poB01NAWgIR0CYkmaFmFrVdX2UKGgGR0BQX1pGnXNDaAdN6ANoCEdAmJpohUzbe3V9lChoBkfAMMyiEg4ffWgHS7VoCEdAmKWtYjjaPHV9lChoBke/9pYSxqwhXGgHS/hoCEdAmK+upS75EnV9lChoBkfAZRwyk9ECvGgHS8FoCEdAmLYG3BpHqnV9lChoBkdAW0H2WY4Qz2gHTegDaAhHQJi8zW9US7J1fZQoaAZHQFlhwXqJMxpoB03oA2gIR0CYvR6y0KJEdX2UKGgGR0BTWJpWV/tqaAdN6ANoCEdAmL5J8rqdH3V9lChoBkfAaKMSYgJTl2gHS+hoCEdAmMf/8l5WzXV9lChoBkdAVZ2UILPUrmgHTegDaAhHQJjPJrnDBM11fZQoaAZHQFFw2OyVv/BoB03oA2gIR0CY0oNbTtsvdX2UKGgGR0BQA+T7l7tzaAdN6ANoCEdAmOP6GtZFHHV9lChoBkdAQtAhUzbeuWgHTegDaAhHQJjrLk3juKJ1fZQoaAZHQGEPxYA80UJoB03oA2gIR0CY8WyMDOkddX2UKGgGR0BTYF49ovi+aAdN6ANoCEdAmPchgeA/cHV9lChoBkdAUr5jWkJrtWgHTegDaAhHQJj9xGqgh8p1fZQoaAZHQFbX8RtgrpdoB03oA2gIR0CZECNZvDP4dX2UKGgGR8AKb4xk/bCaaAdNcAJoCEdAmRBw6IWP93V9lChoBkdAVKgN7SiM52gHTegDaAhHQJkmeFUQ0411fZQoaAZHQFcWPppvgm9oB03oA2gIR0CZKZv3rUsndX2UKGgGR8BSErwnYxtYaAdNPQFoCEdAmUi5MlC1JHV9lChoBkdAQnMHUtqYZ2gHTegDaAhHQJlMsWykbgl1fZQoaAZHQFGDb5uZThpoB03oA2gIR0CZW8Sh8IAwdX2UKGgGR0BNKSFPBSDRaAdN6ANoCEdAmVwj4+KTCHV9lChoBkdAOmInv2GqP2gHTegDaAhHQJlde2UjcEh1fZQoaAZHwDfiNR3u/lBoB03oA2gIR0CZaJyBkI5YdX2UKGgGR0BYfDLbHp8naAdN6ANoCEdAmXBm3azu4XV9lChoBkdANcRgNPP9k2gHTegDaAhHQJlz3WmP5pJ1fZQoaAZHwEOGhZha1TloB0vpaAhHQJl/+Y5T6zp1fZQoaAZHQFIUAC4jKPpoB03oA2gIR0CZhqMn7YTTdX2UKGgGR0BRvl/tpmEoaAdN6ANoCEdAmY5nT3IuG3V9lChoBkdAS0cPYnOSn2gHTegDaAhHQJmVMMDwH7h1fZQoaAZHQD2Tn1WbPQhoB03oA2gIR0CZmy1vVEuydX2UKGgGR0BARYnF5v9+aAdN6ANoCEdAmaKJ0wJw9HV9lChoBkdAOSe7+T/yXmgHS+1oCEdAmbMy39aUzXV9lChoBkdAWivRBu4wy2gHTegDaAhHQJm2r0RODap1fZQoaAZHQFAbn4O+ZgJoB03oA2gIR0CZx4zgdfb9dX2UKGgGR0BTE7RF7UobaAdN6ANoCEdAmdJ/yPMjeXV9lChoBkfAUVj3Dej2z2gHS9hoCEdAmeHrNKRMe3V9lChoBkdAUtn3oLXtjWgHTegDaAhHQJnz4OEug6F1fZQoaAZHQEIMAYpDu0FoB03oA2gIR0CZ98PyCnP3dX2UKGgGR0BUeQksz2vjaAdN6ANoCEdAmgYfMGHHm3V9lChoBkfANaqmXPZ7HGgHTegDaAhHQJoH3z4DcM51fZQoaAZHQEpA2YOUdJdoB03oA2gIR0CaE33xWkrPdX2UKGgGR8BBSixFAmiQaAdN6ANoCEdAmhuCdBjWkXV9lChoBkdAUc5fKISDiGgHTegDaAhHQJofHehwl0J1fZQoaAZHQFIjeRPoFFFoB03oA2gIR0CaKylAeJYUdX2UKGgGR0BbfC/oJRfnaAdN6ANoCEdAmjFHMpw0f3V9lChoBkfAbBQ6RQrMDGgHTYkDaAhHQJo2L7pFCsx1fZQoaAZHQFPXn/1g6U9oB03oA2gIR0CaPhfzz3AVdX2UKGgGR8BLtWv0RODbaAdNJwFoCEdAmj9sGLUCrHV9lChoBkdAUl9ttQ9A5mgHTegDaAhHQJpKA9LYf4h1fZQoaAZHQFCHE6kqMFVoB03oA2gIR0CaWVa2F36idX2UKGgGR8BwUkdFOO81aAdNEANoCEdAmlx69XcQAnV9lChoBkdAWPdmukk8imgHTegDaAhHQJproH9m6Gx1fZQoaAZHQFNec4YJmd1oB03oA2gIR0Cabr+fAbhndWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
@@ -58,7 +58,7 @@
58
  "ent_coef": 0.01,
59
  "vf_coef": 0.5,
60
  "max_grad_norm": 0.5,
61
- "batch_size": 128,
62
  "n_epochs": 4,
63
  "clip_range": {
64
  ":type:": "<class 'function'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f649f0bd9d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f649f0bda60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f649f0bdaf0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f649f0bdb80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f649f0bdc10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f649f0bdca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f649f0bdd30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f649f0bddc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f649f0bde50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f649f0bdee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f649f0bdf70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f649f0c5040>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f649f0c37c0>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1704673865209088971,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNbszwche4+IlbMPkRMH74f6pK+3RuhPgAAAAAAAAAAxisKvhGEKj4XIJY+JoGCvZuIBL+jyGY+AAAAAAAAAAAmtIw92oKpP8SIuT6iA1K+mnwJveUIf7sAAAAAAAAAAO2nP76KfZc/Mg3yPuh/hr7945G9eObYPgAAAAAAAAAAJnCkPQJupT4yllQ+TJDSvdjoRr3ivlk+AAAAAAAAAADgzim+U0//Pt4vArwks0q+tz7hPVGtRL0AAAAAAAAAAE3A4T32yAk5pRKJO6omJblEidk77S0tuAAAAAAAAIA/84qGPQUvjj9uzNy9w152vc0VYb58PQm+AAAAAAAAAABNz04915NsuYX77Trzp1U1a64Huh6OCroAAIA/AACAP7Mm1j3hyJ26C7R2vBbIkTlTdoi72xF/ugAAgD8AAIA/ZjB7PBQgn7qIepm6VRpqvBPajjoCxU49AACAPwAAgD+a6yQ+sCyzP84b4T7ZbKK+3We4PrGmrj4AAAAAAAAAAPp1Ez7oT+s+7FwduFlpS77NYfG+1gstvgAAAAAAAAAAzfrXPKQqWbtFMis9QZQRPRHKbjxlwfO9AACAPwAAgD8AMJM8109Qu8JpRb2N2l+9Gs+IvCpYNL4AAIA/AACAPyZ+S74f1ay5G/Q0u27XhLn+qeU6UNVaOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCWbyc0+C9SMAWyUS3KMAXSUR0Ca1YYPGyX2dX2UKGgGR0BAegX2ugYhaAdN6ANoCEdAmtbtYwIt2HV9lChoBkdAUykT0xubZ2gHTegDaAhHQJrsHONYKY11fZQoaAZHQCmYfGMn7YVoB0vuaAhHQJr1Wq2jO9p1fZQoaAZHQETjnuiN83NoB03oA2gIR0Ca+h8zyjHodX2UKGgGR0BPNqC6H0sfaAdN6ANoCEdAmxA5QtSQ5nV9lChoBkdAJmS4FzMibGgHS8xoCEdAmx43DWK/EnV9lChoBkdASDr1qWTouGgHTegDaAhHQJsmKD9Oymh1fZQoaAZHQEKLvoePq9poB03oA2gIR0CbMoY4hllLdX2UKGgGR0BLLmgBcRlIaAdN6ANoCEdAm0Jcq4H5anV9lChoBkdAVeEzqKP4mGgHTegDaAhHQJtICqzZ6D51fZQoaAZHwCsRE8aGYa5oB0vraAhHQJtK/0ulGgB1fZQoaAZHQFQZMtbs4T9oB03oA2gIR0CbS+BAfMfSdX2UKGgGR0A9cPWQOnVHaAdN6ANoCEdAm1q42XLNfXV9lChoBkdAT6pCjUNKAmgHTegDaAhHQJtgBHXmNip1fZQoaAZHwDkeMBIWgvloB03oA2gIR0CbZwkv9LpSdX2UKGgGR0BbEDF+/gzhaAdN6ANoCEdAm2nUrK/203V9lChoBkfALlFByCFsYWgHTXMBaAhHQJtwjwF1SwZ1fZQoaAZHQDWKcf/3nIRoB03oA2gIR0CbdRUGmk30dX2UKGgGR0A8QKwpvxYraAdN6ANoCEdAm4KTfek563V9lChoBkdAU1M4iosI3WgHTegDaAhHQJuD9Ixxkup1fZQoaAZHwDsgPAfuCwtoB01FAWgIR0CbkLKYAsCldX2UKGgGR8BC3gJC0F8paAdL3GgIR0CbkcZQHiWFdX2UKGgGR0A+z4Bmwqy4aAdN6ANoCEdAm5fqK1og3nV9lChoBkdATVgXAM2FWWgHTegDaAhHQJugkiUxEfF1fZQoaAZHP/MKpDNQj2VoB00QAWgIR0CbqMW43FUAdX2UKGgGR8BvIEb3oLXuaAdNHgJoCEdAm6jp+YtxuXV9lChoBkfAYQx8k2P1c2gHTaIBaAhHQJupnQJHAh11fZQoaAZHQEocFoL5RCRoB03oA2gIR0CbtqCfHxSYdX2UKGgGR8BQ+vywwCbMaAdNQQFoCEdAm8AEliSaE3V9lChoBkdABcxmCiAUcmgHTQsBaAhHQJvR2dTYNAl1fZQoaAZHQFHzwiqyWzFoB03oA2gIR0Cb01n5SFXadX2UKGgGR0BFHj+BH09RaAdN6ANoCEdAm+HSCaqjrXV9lChoBkfAJxdJz1bqyGgHTegDaAhHQJvmgjyFwkx1fZQoaAZHQEwETJQtSQ5oB03oA2gIR0Cb6P3eenQ6dX2UKGgGR0A6Rci4axX5aAdN6ANoCEdAm+m0YsNDt3V9lChoBkfARRh+lTFVDWgHTegDaAhHQJvqh29tdiV1fZQoaAZHQFSiJul41P5oB03oA2gIR0CcBaR/EwWWdX2UKGgGR0BFs690zTF3aAdN6ANoCEdAnCVVCb+cY3V9lChoBkfAZtEFmFrVOWgHTVICaAhHQJwotPRArx11fZQoaAZHQFCknYg7o0RoB03oA2gIR0CcNh6F/QSjdX2UKGgGR8AYjJIUahpQaAdN6ANoCEdAnD5/qcEvCnV9lChoBkdAVSt2hZha1WgHTegDaAhHQJxIaCsfaHt1fZQoaAZHQCXWpEQXhwVoB03oA2gIR0CcUbwLVnVYdX2UKGgGR0BOjLpiZv1laAdN6ANoCEdAnFHfxx1gY3V9lChoBkdAWrwRe1KGtmgHTegDaAhHQJxhBr9ETg51fZQoaAZHwCkdS0jTrmhoB0vWaAhHQJxqE2AG0NV1fZQoaAZHQFMwH6uW8h9oB03oA2gIR0CcfpHuJDVpdX2UKGgGR8AxRD6FdszmaAdN6ANoCEdAnIAMjJMg2nV9lChoBkdARSG+IuXeFmgHTegDaAhHQJyOo4ku6Et1fZQoaAZHwGxxVjy4FzNoB00TAmgIR0CcjuyNGViXdX2UKGgGRz+ntnf2saKlaAdN6ANoCEdAnJNqNhmXgXV9lChoBkfAZ/bdZ7ojfWgHTdQDaAhHQJyUl3cHnlp1fZQoaAZHQDgfJA+pwS9oB03oA2gIR0CclcABT4tZdX2UKGgGR0BOkuuq3mV8aAdN6ANoCEdAnJZcQmNR33V9lChoBkfAbeo3zcynDWgHTWgCaAhHQJytb1kDp1R1fZQoaAZHQFRRtzCDVYpoB03oA2gIR0CcsRK3/givdX2UKGgGR8BvgdCb+cYqaAdN9AFoCEdAnLi+fh/AkHV9lChoBkfAM41cD8tPHmgHS9poCEdAnLwmWIGhVXV9lChoBkfAUNOesgdOqWgHS+VoCEdAnL4J1mrbQHV9lChoBkdAEJAMlTm4iGgHTTwBaAhHQJzGRSjxkNF1fZQoaAZHQE1lYkmhM8JoB03oA2gIR0Ccyf7xusLfdX2UKGgGR0BWFhUipvP1aAdN6ANoCEdAnMyPhAGB4HV9lChoBkfAcGC53Tuv2WgHTT8BaAhHQJzYHNMXaal1fZQoaAZHwFPn+N96TntoB0v2aAhHQJzdiF/QSjB1fZQoaAZHwDHd4QjD8+BoB0vJaAhHQJzgU2pAD7t1fZQoaAZHwDCbQpnYg7poB03oA2gIR0Cc7VQr+YMOdX2UKGgGR0BO70liSaE0aAdN6ANoCEdAnO1z+m3vyHV9lChoBkdAUWJhG6PKdWgHTegDaAhHQJ0D9qM3qA11fZQoaAZHwGTrfjbSJCVoB03AAmgIR0CdC2HsC1Z1dX2UKGgGR0BLVcB2fTTfaAdL7GgIR0CdEDNvwVj7dX2UKGgGR0A4lw6ySmqHaAdN6ANoCEdAnRYsRpUPx3V9lChoBkfAFF0UGmk30mgHTegDaAhHQJ0XcQOFxn51fZQoaAZHwCRq4lQdjoZoB02gAWgIR0CdHl5y2hIwdX2UKGgGR8A//nZ00WM1aAdLzmgIR0CdI7w6ySmqdX2UKGgGR0BINdZRsMy8aAdN6ANoCEdAnSPz5O8CgnV9lChoBkfAMHrwrlNlAmgHTegDaAhHQJ0kL4k/r0J1fZQoaAZHQCxHgtOEdvNoB03oA2gIR0CdKJ/wRXfZdX2UKGgGR0BFbjSgGr0baAdLxmgIR0CdKKVrylN2dX2UKGgGR8AjLGKAJ9iMaAdLymgIR0CdMj2cawUydX2UKGgGR8AzNZof0VafaAdL2mgIR0CdThuQIUrTdX2UKGgGR0BVXy5mRNh3aAdN6ANoCEdAnVDmhdt2tHV9lChoBkdAWFv8Muvll2gHTegDaAhHQJ1VMy0rsjV1fZQoaAZHQEMydqcmShdoB03oA2gIR0CdZSrGza9LdX2UKGgGR0BZs0nkT6BRaAdN6ANoCEdAnWgQFs54nnV9lChoBkdASRJmqYJE6WgHTegDaAhHQJ11kdq+Jxh1fZQoaAZHQFQkg5zYEntoB03oA2gIR0Cde3Gff4yodX2UKGgGR8BFBjjR2KVIaAdNQgFoCEdAnYP4SpR4yHV9lChoBkfAQRmS+xnnMmgHTegDaAhHQJ2Lav/zasZ1fZQoaAZHQDQH5mAbyYpoB00KAWgIR0CdjvGT9sJqdX2UKGgGR0BT83os7MgVaAdN6ANoCEdAnbJ5F1B+nnV9lChoBkdANeVmSQo1DWgHTegDaAhHQJ25XYraufV1fZQoaAZHQEtGSFoL5RFoB03oA2gIR0Cdw3KNyYG/dX2UKGgGR8Ad5MFlkH2RaAdNSQFoCEdAncPMD8tPHnV9lChoBkdANAX/5tWMj2gHTegDaAhHQJ3J7d0q6OJ1fZQoaAZHwBSppFkQPI5oB03oA2gIR0Cdyi0EHMUzdX2UKGgGR8BTKzasZHd5aAdN6ANoCEdAnc9y9h7VrnV9lChoBkdAVYaLdepn6GgHTegDaAhHQJ3PfOu7pV11fZQoaAZHQDck+u/1xsFoB03oA2gIR0Cd2fam4y44dX2UKGgGR8BD4+z2OAAiaAdLgGgIR0Cd226jnFHbdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
 
58
  "ent_coef": 0.01,
59
  "vf_coef": 0.5,
60
  "max_grad_norm": 0.5,
61
+ "batch_size": 64,
62
  "n_epochs": 4,
63
  "clip_range": {
64
  ":type:": "<class 'function'>",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7bd106f5df10f66fbc59ab6576cef5d0e03d8d0638bad78596b1f208e9a3b2b4
3
  size 87993
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0670898834b57150becbbca95f45b470d1e3581fd5d61b2efa23996f84c06f2
3
  size 87993
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2fe6fd50176b80119ea6b904d1aa4d059caf838c94d39a955856c8015da2725b
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67590f89e17155197c42783c6ad5e97582b751a47781869143c6fe395be166de
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -55.41947125736042, "std_reward": 81.24220011000511, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-08T00:15:07.089376"}
 
1
+ {"mean_reward": -159.9334051790622, "std_reward": 45.55013270357675, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-08T01:06:23.625294"}