--- library_name: transformers language: - ar license: apache-2.0 base_model: tarteel-ai/whisper-tiny-ar-quran tags: - generated_from_trainer datasets: - numan98/synth-incorrect-verses metrics: - wer model-index: - name: Whisper Nextayah Tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Synth verses type: numan98/synth-incorrect-verses config: default split: None args: train metrics: - name: Wer type: wer value: 20.251905866755056 --- # Whisper Nextayah Tiny This model is a fine-tuned version of [tarteel-ai/whisper-tiny-ar-quran](https://huggingface.co/tarteel-ai/whisper-tiny-ar-quran) on the Synth verses dataset. It achieves the following results on the evaluation set: - Loss: 0.0659 - Wer: 20.2519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1019 | 1.0753 | 100 | 0.0978 | 26.5827 | | 0.0481 | 2.1505 | 200 | 0.0843 | 24.7265 | | 0.0137 | 3.2258 | 300 | 0.0715 | 21.5777 | | 0.0042 | 4.3011 | 400 | 0.0659 | 20.2519 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0