--- library_name: transformers tags: - code - NextJS language: - en base_model: - Qwen/Qwen2.5-1.5B-Instruct base_model_relation: finetune pipeline_tag: text-generation --- # Model Information The Qwen2.5-1.5B-NextJs-code is a quantized, fine-tuned version of the Qwen2.5-1.5B-Instruct model designed specifically for generating NextJs code. - **Base model:** Qwen/Qwen2.5-1.5B-Instruct # How to use Starting with transformers version 4.44.0 and later, you can run conversational inference using the Transformers pipeline. Make sure to update your transformers installation via pip install --upgrade transformers. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline ``` ```python def get_pipline(): model_name = "nirusanan/Qwen2.5-1.5B-NextJs-code" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="cuda:0", trust_remote_code=True ) pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=3500) return pipe pipe = get_pipline() ``` ```python def generate_prompt(project_title, description): prompt = f"""Below is an instruction that describes a project. Write Nextjs 14 code to accomplish the project described below. ### Instruction: Project: {project_title} Project Description: {description} ### Response: """ return prompt ``` ```python prompt = generate_prompt(project_title = "Your NextJs project", description = "Your NextJs project description") result = pipe(prompt) generated_text = result[0]['generated_text'] print(generated_text.split("### End")[0]) ```