--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - generator metrics: - accuracy - f1 model-index: - name: test_emotion_detection_gersti results: - task: name: Text Classification type: text-classification dataset: name: generator type: generator config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.47309833024118736 - name: F1 type: f1 value: 0.14226543980966658 --- # test_emotion_detection_gersti This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 2.1084 - Accuracy: 0.4731 - F1: 0.1423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3