---
tags:
- fp8
- vllm
license: apache-2.0
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: ibm-granite/granite-3.1-8b-instruct
library_name: transformers
---
# granite-3.1-8b-instruct-FP8-dynamic
## Model Overview
- **Model Architecture:** granite-3.1-8b-instruct
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:** 1/8/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct).
It achieves an average score of 70.57 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 70.30.
### Model Optimizations
This model was obtained by quantizing the weights and activations of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 4096, 1
model_name = "neuralmagic/granite-3.1-8b-instruct-FP8-dynamic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
Model Creation Code
```bash
python quantize.py --model_id ibm-granite/granite-3.1-8b-instruct --save_path "output_dir/"
```
```python
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
import os
def main():
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
parser.add_argument('--model_id', type=str, required=True,
help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")')
parser.add_argument('--save_path', type=str, default='.',
help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic')
args = parser.parse_args()
# Load model
model = AutoModelForCausalLM.from_pretrained(
args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
)
# Apply quantization
oneshot(model=model, recipe=recipe)
save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic")
os.makedirs(save_path, exist_ok=True)
# Save to disk in compressed-tensors format
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
if __name__ == "__main__":
main()
```
Evaluation Commands
OpenLLM Leaderboard V1:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/granite-3.1-8b-instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
```
OpenLLM Leaderboard V2:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/granite-3.1-8b-instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
```
#### HumanEval
##### Generation
```
python3 codegen/generate.py \
--model neuralmagic/granite-3.1-8b-instruct-FP8-dynamic \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
```
##### Sanitization
```
python3 evalplus/sanitize.py \
humaneval/neuralmagic--granite-3.1-8b-instruct-FP8-dynamic_vllm_temp_0.2
```
##### Evaluation
```
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/neuralmagic--granite-3.1-8b-instruct-FP8-dynamic_vllm_temp_0.2-sanitized
```
Category | Metric | ibm-granite/granite-3.1-8b-instruct | neuralmagic/granite-3.1-8b-instruct-FP8-dynamic | Recovery (%) |
---|---|---|---|---|
OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 66.81 | 66.81 | 100.00 |
GSM8K (Strict-Match, 5-shot) | 64.52 | 66.64 | 103.29 | |
HellaSwag (Acc-Norm, 10-shot) | 84.18 | 84.16 | 99.98 | |
MMLU (Acc, 5-shot) | 65.52 | 65.36 | 99.76 | |
TruthfulQA (MC2, 0-shot) | 60.57 | 60.52 | 99.92 | |
Winogrande (Acc, 5-shot) | 80.19 | 79.95 | 99.70 | |
Average Score | 70.30 | 70.57 | 100.39 | |
OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 74.10 | 73.62 | 99.35 |
BBH (Acc-Norm, 3-shot) | 53.19 | 53.26 | 100.13 | |
Math-Hard (Exact-Match, 4-shot) | 14.77 | 16.79 | 113.66 | |
GPQA (Acc-Norm, 0-shot) | 31.76 | 32.58 | 102.58 | |
MUSR (Acc-Norm, 0-shot) | 46.01 | 47.34 | 102.89 | |
MMLU-Pro (Acc, 5-shot) | 35.81 | 35.72 | 99.75 | |
Average Score | 42.61 | 43.22 | 101.43 | |
Coding | HumanEval Pass@1 | 71.00 | 69.90 | 98.45 |
Latency (s) | |||||||||
---|---|---|---|---|---|---|---|---|---|
GPU class | Model | Speedup | Code Completion prefill: 256 tokens decode: 1024 tokens |
Docstring Generation prefill: 768 tokens decode: 128 tokens |
Code Fixing prefill: 1024 tokens decode: 1024 tokens |
RAG prefill: 1024 tokens decode: 128 tokens |
Instruction Following prefill: 256 tokens decode: 128 tokens |
Multi-turn Chat prefill: 512 tokens decode: 256 tokens |
Large Summarization prefill: 4096 tokens decode: 512 tokens |
L40 | granite-3.1-8b-instruct | 25.1 | 3.2 | 25.3 | 3.2 | 3.2 | 6.3 | 13.4 | |
granite-3.1-8b-instruct-FP8-dynamic (this model) |
1.47 | 16.8 | 2.2 | 17.1 | 2.2 | 2.1 | 4.2 | 9.3 | |
granite-3.1-8b-instruct-quantized.w4a16 | 2.72 | 8.9 | 1.2 | 9.2 | 1.2 | 1.1 | 2.3 | 5.3 |
Maximum Throughput (Queries per Second) | |||||||||
---|---|---|---|---|---|---|---|---|---|
GPU class | Model | Speedup | Code Completion prefill: 256 tokens decode: 1024 tokens |
Docstring Generation prefill: 768 tokens decode: 128 tokens |
Code Fixing prefill: 1024 tokens decode: 1024 tokens |
RAG prefill: 1024 tokens decode: 128 tokens |
Instruction Following prefill: 256 tokens decode: 128 tokens |
Multi-turn Chat prefill: 512 tokens decode: 256 tokens |
Large Summarization prefill: 4096 tokens decode: 512 tokens |
L40 | granite-3.1-8b-instruct | 1.4 | 7.8 | 1.1 | 6.2 | 15.5 | 6.0 | 0.7 | |
granite-3.1-8b-instruct-FP8-dynamic (this model) |
1.12 | 2.1 | 7.4 | 1.3 | 5.9 | 15.3 | 6.9 | 0.8 | |
granite-3.1-2b-instruct-quantized.w4a16 | 1.29 | 2.4 | 8.9 | 1.4 | 7.1 | 17.8 | 7.8 | 1.0 |