File size: 2,510 Bytes
0d1cc25
a9c160f
 
 
 
0d1cc25
a9c160f
 
 
 
0d1cc25
 
a9c160f
0d1cc25
a9c160f
 
 
 
0d1cc25
a9c160f
0d1cc25
a9c160f
 
 
0d1cc25
a9c160f
 
 
0d1cc25
 
a9c160f
0d1cc25
a9c160f
 
0d1cc25
a9c160f
0d1cc25
 
 
a9c160f
0d1cc25
a9c160f
0d1cc25
 
a9c160f
0d1cc25
a9c160f
 
0d1cc25
a9c160f
 
 
 
 
 
 
0d1cc25
a9c160f
0d1cc25
a9c160f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: mit
license_name: deepseek
license_link: LICENSE
pipeline_tag: any-to-any
library_name: transformers
tags:
- muiltimodal
- text-to-image
- unified-model
---

## 1. Introduction

Janus-Pro is a novel autoregressive framework that unifies multimodal understanding and generation. 
It addresses the limitations of previous approaches by decoupling visual encoding into separate pathways, while still utilizing a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder’s roles in understanding and generation, but also enhances the framework’s flexibility. 
Janus-Pro surpasses previous unified model and matches or exceeds the performance of task-specific models. 
The simplicity, high flexibility, and effectiveness of Janus-Pro make it a strong candidate for next-generation unified multimodal models.

[**Github Repository**](https://github.com/deepseek-ai/Janus)

<div align="center">
<img alt="image" src="janus_pro_teaser1.png" style="width:90%;">
</div>

<div align="center">
<img alt="image" src="janus_pro_teaser2.png" style="width:90%;">
</div>


### 2. Model Summary

Janus-Pro is a unified understanding and generation MLLM, which decouples visual encoding for multimodal understanding and generation. 
Janus-Pro is constructed based on the DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base.

For multimodal understanding, it uses the [SigLIP-L](https://huggingface.co/timm/ViT-L-16-SigLIP-384) as the vision encoder, which supports 384 x 384 image input. For image generation, Janus-Pro uses the tokenizer from [here](https://github.com/FoundationVision/LlamaGen) with a downsample rate of 16.



## 3. Quick Start

Please refer to [**Github Repository**](https://github.com/deepseek-ai/Janus)


## 4. License

This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-CODE). The use of Janus-Pro models is subject to [DeepSeek Model License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-MODEL).
## 5. Citation

```
@misc{chen2025januspro,
      title={Janus-Pro: Unified Multimodal Understanding and Generation with Data and Model Scaling}, 
      author={Xiaokang Chen and Zhiyu Wu and Xingchao Liu and Zizheng Pan and Wen Liu and Zhenda Xie and Xingkai Yu and Chong Ruan},
      year={2025},
}
```

## 6. Contact

If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]).