File size: 4,008 Bytes
f88a758
 
 
 
9f39c1a
f88a758
 
9f39c1a
f88a758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f39c1a
f88a758
 
9f39c1a
d3b8dae
 
f88a758
 
 
d3b8dae
 
f88a758
9f39c1a
f88a758
 
 
d3b8dae
f88a758
 
 
9f39c1a
f88a758
 
 
 
 
 
 
9f39c1a
d3b8dae
f88a758
 
d3b8dae
f88a758
 
 
d3b8dae
f88a758
 
9f39c1a
f88a758
 
 
 
 
 
 
9f39c1a
f88a758
9f39c1a
f88a758
 
 
 
 
 
 
 
 
 
 
 
9f39c1a
f88a758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3b8dae
 
 
f88a758
d3b8dae
 
 
f88a758
9f39c1a
 
f88a758
 
 
 
 
 
 
 
9f39c1a
 
 
f88a758
 
 
 
 
 
d3b8dae
f88a758
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
library_name: peft
base_model: katuni4ka/tiny-random-dbrx
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 74090ab0-1891-42b3-b53d-e6ca30f24c6a
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: lora
auto_find_batch_size: true
base_model: katuni4ka/tiny-random-dbrx
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 285bfd19833f31b9_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/285bfd19833f31b9_train_data.json
  type:
    field_instruction: premise
    field_output: hypothesis
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 205
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/74090ab0-1891-42b3-b53d-e6ca30f24c6a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 205
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 
micro_batch_size: 32
mlflow_experiment_name: /tmp/285bfd19833f31b9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: /workspace/hub_repo/last-checkpoint
s2_attention: null
sample_packing: false
save_steps: 205
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: 
wandb_name: 2947f66f-fa76-448b-9e40-d51beb5bff45
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2947f66f-fa76-448b-9e40-d51beb5bff45
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# 74090ab0-1891-42b3-b53d-e6ca30f24c6a

This model is a fine-tuned version of [katuni4ka/tiny-random-dbrx](https://huggingface.co/katuni4ka/tiny-random-dbrx) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 11.5

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 526
- num_epochs: 50

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0196 | 1    | 11.5            |
| No log        | 0.3922 | 20   | 11.5            |
| No log        | 0.7843 | 40   | 11.5            |
| No log        | 0.5687 | 60   | 11.5            |
| No log        | 0.7583 | 80   | 11.5            |
| 23.0          | 0.9479 | 100  | 11.5            |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1