moussaKam commited on
Commit
1be3bcf
·
verified ·
1 Parent(s): b54b43b
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "moussaKam/fr-qwen-3B-base",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2048,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 36,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 36,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.46.1",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.46.1"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step3962
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9bbcb05eaaeeba15b23df2a066c482e8f653ed65e2219b1331160012a64ba8c
3
+ size 4957560304
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f7b0c7dbcc57dbf41f14791ca57edcfad3dfbc935d3a12f1ec74150cb76c693
3
+ size 1836696752
model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6794207232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,2805 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9998107374929026,
5
+ "eval_steps": 500,
6
+ "global_step": 3962,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0025235000946312535,
13
+ "grad_norm": 4.200274467468262,
14
+ "learning_rate": 1.2594458438287156e-06,
15
+ "loss": 0.9928,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.005047000189262507,
20
+ "grad_norm": 5.791783332824707,
21
+ "learning_rate": 2.518891687657431e-06,
22
+ "loss": 0.9146,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.007570500283893761,
27
+ "grad_norm": 1.0928738117218018,
28
+ "learning_rate": 3.7783375314861467e-06,
29
+ "loss": 0.8451,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.010094000378525014,
34
+ "grad_norm": 0.792613685131073,
35
+ "learning_rate": 5.037783375314862e-06,
36
+ "loss": 0.8395,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.012617500473156268,
41
+ "grad_norm": 0.8177407383918762,
42
+ "learning_rate": 6.297229219143577e-06,
43
+ "loss": 0.7893,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.015141000567787522,
48
+ "grad_norm": 0.7625726461410522,
49
+ "learning_rate": 7.556675062972293e-06,
50
+ "loss": 0.8163,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.017664500662418776,
55
+ "grad_norm": 0.8031908869743347,
56
+ "learning_rate": 8.816120906801008e-06,
57
+ "loss": 0.8137,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.020188000757050028,
62
+ "grad_norm": 0.8055213093757629,
63
+ "learning_rate": 1.0075566750629725e-05,
64
+ "loss": 0.8012,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.022711500851681284,
69
+ "grad_norm": 0.8089568614959717,
70
+ "learning_rate": 1.133501259445844e-05,
71
+ "loss": 0.7879,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.025235000946312536,
76
+ "grad_norm": 0.798632025718689,
77
+ "learning_rate": 1.2594458438287154e-05,
78
+ "loss": 0.7832,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.027758501040943788,
83
+ "grad_norm": 0.8331993818283081,
84
+ "learning_rate": 1.385390428211587e-05,
85
+ "loss": 0.8476,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.030282001135575044,
90
+ "grad_norm": 0.6234100461006165,
91
+ "learning_rate": 1.5113350125944587e-05,
92
+ "loss": 0.8122,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.0328055012302063,
97
+ "grad_norm": 0.841749906539917,
98
+ "learning_rate": 1.63727959697733e-05,
99
+ "loss": 0.7766,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.03532900132483755,
104
+ "grad_norm": 0.8041658997535706,
105
+ "learning_rate": 1.7632241813602016e-05,
106
+ "loss": 0.7657,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.037852501419468804,
111
+ "grad_norm": 0.8009690046310425,
112
+ "learning_rate": 1.8891687657430733e-05,
113
+ "loss": 0.8194,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.040376001514100056,
118
+ "grad_norm": 0.776654064655304,
119
+ "learning_rate": 2.015113350125945e-05,
120
+ "loss": 0.8009,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.04289950160873131,
125
+ "grad_norm": 0.7446156740188599,
126
+ "learning_rate": 2.1410579345088162e-05,
127
+ "loss": 0.7832,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.04542300170336257,
132
+ "grad_norm": 0.7450286149978638,
133
+ "learning_rate": 2.267002518891688e-05,
134
+ "loss": 0.8252,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.04794650179799382,
139
+ "grad_norm": 0.788154125213623,
140
+ "learning_rate": 2.392947103274559e-05,
141
+ "loss": 0.8131,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.05047000189262507,
146
+ "grad_norm": 0.8005194067955017,
147
+ "learning_rate": 2.5188916876574308e-05,
148
+ "loss": 0.816,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.052993501987256324,
153
+ "grad_norm": 0.849112868309021,
154
+ "learning_rate": 2.6448362720403024e-05,
155
+ "loss": 0.8028,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.055517002081887576,
160
+ "grad_norm": 0.7202879786491394,
161
+ "learning_rate": 2.770780856423174e-05,
162
+ "loss": 0.8145,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.058040502176518835,
167
+ "grad_norm": 0.8000121116638184,
168
+ "learning_rate": 2.8967254408060457e-05,
169
+ "loss": 0.7571,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.06056400227115009,
174
+ "grad_norm": 0.7495560050010681,
175
+ "learning_rate": 3.0226700251889174e-05,
176
+ "loss": 0.768,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.06308750236578134,
181
+ "grad_norm": 0.8274487853050232,
182
+ "learning_rate": 3.148614609571788e-05,
183
+ "loss": 0.8411,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.0656110024604126,
188
+ "grad_norm": 0.9089523553848267,
189
+ "learning_rate": 3.27455919395466e-05,
190
+ "loss": 0.8114,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.06813450255504384,
195
+ "grad_norm": 0.8551489114761353,
196
+ "learning_rate": 3.4005037783375316e-05,
197
+ "loss": 0.8122,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.0706580026496751,
202
+ "grad_norm": 0.8696727156639099,
203
+ "learning_rate": 3.526448362720403e-05,
204
+ "loss": 0.7858,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.07318150274430635,
209
+ "grad_norm": 0.8770012259483337,
210
+ "learning_rate": 3.652392947103275e-05,
211
+ "loss": 0.7971,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.07570500283893761,
216
+ "grad_norm": 0.8717426657676697,
217
+ "learning_rate": 3.7783375314861465e-05,
218
+ "loss": 0.7703,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.07822850293356887,
223
+ "grad_norm": 0.8454267382621765,
224
+ "learning_rate": 3.904282115869018e-05,
225
+ "loss": 0.8146,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.08075200302820011,
230
+ "grad_norm": 0.7605656981468201,
231
+ "learning_rate": 4.03022670025189e-05,
232
+ "loss": 0.7875,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.08327550312283137,
237
+ "grad_norm": 0.7611861228942871,
238
+ "learning_rate": 4.1561712846347615e-05,
239
+ "loss": 0.8089,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.08579900321746262,
244
+ "grad_norm": 0.7927576303482056,
245
+ "learning_rate": 4.2821158690176324e-05,
246
+ "loss": 0.7802,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.08832250331209388,
251
+ "grad_norm": 0.8251197338104248,
252
+ "learning_rate": 4.408060453400504e-05,
253
+ "loss": 0.7648,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.09084600340672513,
258
+ "grad_norm": 0.7899374961853027,
259
+ "learning_rate": 4.534005037783376e-05,
260
+ "loss": 0.8011,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.09336950350135638,
265
+ "grad_norm": 0.8102702498435974,
266
+ "learning_rate": 4.659949622166247e-05,
267
+ "loss": 0.8063,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.09589300359598764,
272
+ "grad_norm": 0.8451895713806152,
273
+ "learning_rate": 4.785894206549118e-05,
274
+ "loss": 0.8162,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.09841650369061888,
279
+ "grad_norm": 0.664681077003479,
280
+ "learning_rate": 4.91183879093199e-05,
281
+ "loss": 0.8095,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.10094000378525014,
286
+ "grad_norm": 1.5052850246429443,
287
+ "learning_rate": 4.999991263591223e-05,
288
+ "loss": 0.7586,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.1034635038798814,
293
+ "grad_norm": 0.7986663579940796,
294
+ "learning_rate": 4.9998359513560176e-05,
295
+ "loss": 0.783,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.10598700397451265,
300
+ "grad_norm": 0.7573216557502747,
301
+ "learning_rate": 4.999486510586282e-05,
302
+ "loss": 0.8245,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.1085105040691439,
307
+ "grad_norm": 0.7997973561286926,
308
+ "learning_rate": 4.9989429684183686e-05,
309
+ "loss": 0.8228,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.11103400416377515,
314
+ "grad_norm": 0.7936347723007202,
315
+ "learning_rate": 4.9982053670618626e-05,
316
+ "loss": 0.8098,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.11355750425840641,
321
+ "grad_norm": 0.7175100445747375,
322
+ "learning_rate": 4.997273763796312e-05,
323
+ "loss": 0.7959,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.11608100435303767,
328
+ "grad_norm": 0.8202365040779114,
329
+ "learning_rate": 4.996148230966775e-05,
330
+ "loss": 0.7682,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.11860450444766892,
335
+ "grad_norm": 0.7965167164802551,
336
+ "learning_rate": 4.994828855978202e-05,
337
+ "loss": 0.8459,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.12112800454230017,
342
+ "grad_norm": 0.7704299092292786,
343
+ "learning_rate": 4.99331574128865e-05,
344
+ "loss": 0.7659,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.12365150463693142,
349
+ "grad_norm": 0.7578620910644531,
350
+ "learning_rate": 4.991609004401324e-05,
351
+ "loss": 0.8097,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.12617500473156268,
356
+ "grad_norm": 0.7264330983161926,
357
+ "learning_rate": 4.989708777855453e-05,
358
+ "loss": 0.8092,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.12869850482619394,
363
+ "grad_norm": 0.8330686092376709,
364
+ "learning_rate": 4.9876152092159994e-05,
365
+ "loss": 0.8352,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.1312220049208252,
370
+ "grad_norm": 0.6997131705284119,
371
+ "learning_rate": 4.985328461062195e-05,
372
+ "loss": 0.8109,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.13374550501545643,
377
+ "grad_norm": 0.6822782754898071,
378
+ "learning_rate": 4.98284871097492e-05,
379
+ "loss": 0.8048,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.1362690051100877,
384
+ "grad_norm": 0.741365373134613,
385
+ "learning_rate": 4.98017615152291e-05,
386
+ "loss": 0.8053,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.13879250520471895,
391
+ "grad_norm": 0.7147175669670105,
392
+ "learning_rate": 4.977310990247807e-05,
393
+ "loss": 0.8005,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.1413160052993502,
398
+ "grad_norm": 0.8730887770652771,
399
+ "learning_rate": 4.974253449648031e-05,
400
+ "loss": 0.8088,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.14383950539398146,
405
+ "grad_norm": 0.7284607887268066,
406
+ "learning_rate": 4.971003767161516e-05,
407
+ "loss": 0.8023,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.1463630054886127,
412
+ "grad_norm": 0.737747311592102,
413
+ "learning_rate": 4.9675621951472584e-05,
414
+ "loss": 0.808,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.14888650558324396,
419
+ "grad_norm": 0.6779095530509949,
420
+ "learning_rate": 4.9639290008657304e-05,
421
+ "loss": 0.8142,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.15141000567787521,
426
+ "grad_norm": 0.7556443214416504,
427
+ "learning_rate": 4.960104466458118e-05,
428
+ "loss": 0.8131,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.15393350577250647,
433
+ "grad_norm": 0.7624189257621765,
434
+ "learning_rate": 4.956088888924414e-05,
435
+ "loss": 0.7894,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.15645700586713773,
440
+ "grad_norm": 0.7633741497993469,
441
+ "learning_rate": 4.951882580100353e-05,
442
+ "loss": 0.8126,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.15898050596176896,
447
+ "grad_norm": 0.6966682076454163,
448
+ "learning_rate": 4.947485866633199e-05,
449
+ "loss": 0.8111,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.16150400605640022,
454
+ "grad_norm": 0.7578861117362976,
455
+ "learning_rate": 4.94289908995637e-05,
456
+ "loss": 0.7498,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.16402750615103148,
461
+ "grad_norm": 0.7788159847259521,
462
+ "learning_rate": 4.938122606262936e-05,
463
+ "loss": 0.8281,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.16655100624566274,
468
+ "grad_norm": 0.7012534737586975,
469
+ "learning_rate": 4.9331567864779457e-05,
470
+ "loss": 0.8298,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.169074506340294,
475
+ "grad_norm": 0.6714362502098083,
476
+ "learning_rate": 4.928002016229634e-05,
477
+ "loss": 0.8126,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.17159800643492523,
482
+ "grad_norm": 0.6076031923294067,
483
+ "learning_rate": 4.9226586958194647e-05,
484
+ "loss": 0.8289,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.1741215065295565,
489
+ "grad_norm": 0.6331019997596741,
490
+ "learning_rate": 4.9171272401910504e-05,
491
+ "loss": 0.7602,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.17664500662418775,
496
+ "grad_norm": 2.956536293029785,
497
+ "learning_rate": 4.9114080788979284e-05,
498
+ "loss": 0.8143,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.179168506718819,
503
+ "grad_norm": 0.7164005041122437,
504
+ "learning_rate": 4.905501656070202e-05,
505
+ "loss": 0.8158,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.18169200681345027,
510
+ "grad_norm": 0.6963945031166077,
511
+ "learning_rate": 4.8994084303800525e-05,
512
+ "loss": 0.8004,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.1842155069080815,
517
+ "grad_norm": 0.7561419010162354,
518
+ "learning_rate": 4.89312887500612e-05,
519
+ "loss": 0.8064,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.18673900700271276,
524
+ "grad_norm": 0.672164261341095,
525
+ "learning_rate": 4.8866634775967544e-05,
526
+ "loss": 0.8111,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.18926250709734402,
531
+ "grad_norm": 0.6340550184249878,
532
+ "learning_rate": 4.880012740232154e-05,
533
+ "loss": 0.8009,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.19178600719197528,
538
+ "grad_norm": 0.7655452489852905,
539
+ "learning_rate": 4.873177179385368e-05,
540
+ "loss": 0.7912,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.19430950728660654,
545
+ "grad_norm": 0.7131490111351013,
546
+ "learning_rate": 4.866157325882192e-05,
547
+ "loss": 0.8019,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.19683300738123777,
552
+ "grad_norm": 0.7386584877967834,
553
+ "learning_rate": 4.858953724859948e-05,
554
+ "loss": 0.7934,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.19935650747586903,
559
+ "grad_norm": 0.6958081126213074,
560
+ "learning_rate": 4.851566935725147e-05,
561
+ "loss": 0.7727,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.20188000757050029,
566
+ "grad_norm": 0.660095751285553,
567
+ "learning_rate": 4.843997532110051e-05,
568
+ "loss": 0.8002,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.20440350766513155,
573
+ "grad_norm": 0.8626520037651062,
574
+ "learning_rate": 4.836246101828124e-05,
575
+ "loss": 0.8117,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.2069270077597628,
580
+ "grad_norm": 0.608925998210907,
581
+ "learning_rate": 4.828313246828386e-05,
582
+ "loss": 0.8119,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.20945050785439404,
587
+ "grad_norm": 0.6617856621742249,
588
+ "learning_rate": 4.820199583148667e-05,
589
+ "loss": 0.8057,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.2119740079490253,
594
+ "grad_norm": 0.6674720644950867,
595
+ "learning_rate": 4.811905740867769e-05,
596
+ "loss": 0.815,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.21449750804365655,
601
+ "grad_norm": 0.7636524438858032,
602
+ "learning_rate": 4.803432364056535e-05,
603
+ "loss": 0.8113,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.2170210081382878,
608
+ "grad_norm": 0.6965427398681641,
609
+ "learning_rate": 4.794780110727832e-05,
610
+ "loss": 0.783,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.21954450823291907,
615
+ "grad_norm": 0.7165718078613281,
616
+ "learning_rate": 4.785949652785453e-05,
617
+ "loss": 0.8162,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.2220680083275503,
622
+ "grad_norm": 0.8301019072532654,
623
+ "learning_rate": 4.776941675971941e-05,
624
+ "loss": 0.7954,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.22459150842218156,
629
+ "grad_norm": 0.6930355429649353,
630
+ "learning_rate": 4.767756879815334e-05,
631
+ "loss": 0.7955,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.22711500851681282,
636
+ "grad_norm": 0.7135087847709656,
637
+ "learning_rate": 4.758395977574841e-05,
638
+ "loss": 0.8324,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.22963850861144408,
643
+ "grad_norm": 0.6820036172866821,
644
+ "learning_rate": 4.748859696185458e-05,
645
+ "loss": 0.8207,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.23216200870607534,
650
+ "grad_norm": 0.6496434807777405,
651
+ "learning_rate": 4.739148776201512e-05,
652
+ "loss": 0.7498,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.23468550880070657,
657
+ "grad_norm": 0.692870020866394,
658
+ "learning_rate": 4.729263971739154e-05,
659
+ "loss": 0.8109,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.23720900889533783,
664
+ "grad_norm": 0.6766488552093506,
665
+ "learning_rate": 4.719206050417796e-05,
666
+ "loss": 0.7938,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.2397325089899691,
671
+ "grad_norm": 0.6905511617660522,
672
+ "learning_rate": 4.7089757933005016e-05,
673
+ "loss": 0.8036,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.24225600908460035,
678
+ "grad_norm": 1.9566072225570679,
679
+ "learning_rate": 4.698573994833332e-05,
680
+ "loss": 0.7954,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.2447795091792316,
685
+ "grad_norm": 0.7477098107337952,
686
+ "learning_rate": 4.688001462783648e-05,
687
+ "loss": 0.7862,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.24730300927386284,
692
+ "grad_norm": 0.719272792339325,
693
+ "learning_rate": 4.6772590181773866e-05,
694
+ "loss": 0.7626,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.2498265093684941,
699
+ "grad_norm": 0.6895411014556885,
700
+ "learning_rate": 4.6663474952353004e-05,
701
+ "loss": 0.7704,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.25235000946312536,
706
+ "grad_norm": 3.369716167449951,
707
+ "learning_rate": 4.6552677413081756e-05,
708
+ "loss": 0.8274,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.2548735095577566,
713
+ "grad_norm": 1.2634356021881104,
714
+ "learning_rate": 4.644020616811029e-05,
715
+ "loss": 0.813,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.2573970096523879,
720
+ "grad_norm": 0.8203848600387573,
721
+ "learning_rate": 4.6326069951562924e-05,
722
+ "loss": 0.8331,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.25992050974701914,
727
+ "grad_norm": 0.6396493911743164,
728
+ "learning_rate": 4.6210277626859856e-05,
729
+ "loss": 0.7532,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.2624440098416504,
734
+ "grad_norm": 0.6259830594062805,
735
+ "learning_rate": 4.609283818602884e-05,
736
+ "loss": 0.8041,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.2649675099362816,
741
+ "grad_norm": 0.6914517283439636,
742
+ "learning_rate": 4.5973760749006963e-05,
743
+ "loss": 0.8101,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.26749101003091286,
748
+ "grad_norm": 0.652829110622406,
749
+ "learning_rate": 4.585305456293235e-05,
750
+ "loss": 0.8394,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.2700145101255441,
755
+ "grad_norm": 0.9240155220031738,
756
+ "learning_rate": 4.5730729001426083e-05,
757
+ "loss": 0.8135,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.2725380102201754,
762
+ "grad_norm": 0.6168021559715271,
763
+ "learning_rate": 4.5606793563864316e-05,
764
+ "loss": 0.7875,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.27506151031480663,
769
+ "grad_norm": 0.6858901381492615,
770
+ "learning_rate": 4.548125787464054e-05,
771
+ "loss": 0.7863,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.2775850104094379,
776
+ "grad_norm": 0.6377461552619934,
777
+ "learning_rate": 4.535413168241821e-05,
778
+ "loss": 0.7945,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.28010851050406915,
783
+ "grad_norm": 0.644579291343689,
784
+ "learning_rate": 4.522542485937369e-05,
785
+ "loss": 0.8294,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.2826320105987004,
790
+ "grad_norm": 0.6372377872467041,
791
+ "learning_rate": 4.509514740042962e-05,
792
+ "loss": 0.7961,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.28515551069333167,
797
+ "grad_norm": 0.7171216011047363,
798
+ "learning_rate": 4.496330942247873e-05,
799
+ "loss": 0.7968,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.28767901078796293,
804
+ "grad_norm": 0.6972722411155701,
805
+ "learning_rate": 4.482992116359824e-05,
806
+ "loss": 0.7841,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.29020251088259413,
811
+ "grad_norm": 0.6313626170158386,
812
+ "learning_rate": 4.469499298225473e-05,
813
+ "loss": 0.7567,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.2927260109772254,
818
+ "grad_norm": 0.6984760761260986,
819
+ "learning_rate": 4.455853535649984e-05,
820
+ "loss": 0.7877,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.29524951107185665,
825
+ "grad_norm": 0.6628227829933167,
826
+ "learning_rate": 4.442055888315646e-05,
827
+ "loss": 0.7953,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.2977730111664879,
832
+ "grad_norm": 0.6865362524986267,
833
+ "learning_rate": 4.4281074276995936e-05,
834
+ "loss": 0.7553,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.30029651126111917,
839
+ "grad_norm": 0.7026821970939636,
840
+ "learning_rate": 4.4140092369905914e-05,
841
+ "loss": 0.7683,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.30282001135575043,
846
+ "grad_norm": 0.8070855736732483,
847
+ "learning_rate": 4.399762411004922e-05,
848
+ "loss": 0.8004,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.3053435114503817,
853
+ "grad_norm": 0.7692244648933411,
854
+ "learning_rate": 4.3853680561013647e-05,
855
+ "loss": 0.8224,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.30786701154501295,
860
+ "grad_norm": 0.6959588527679443,
861
+ "learning_rate": 4.370827290095277e-05,
862
+ "loss": 0.792,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.3103905116396442,
867
+ "grad_norm": 0.6718862652778625,
868
+ "learning_rate": 4.356141242171795e-05,
869
+ "loss": 0.7937,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.31291401173427547,
874
+ "grad_norm": 0.6850164532661438,
875
+ "learning_rate": 4.3413110527981406e-05,
876
+ "loss": 0.7705,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.31543751182890667,
881
+ "grad_norm": 0.7577234506607056,
882
+ "learning_rate": 4.3263378736350566e-05,
883
+ "loss": 0.7971,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.31796101192353793,
888
+ "grad_norm": 0.7119166851043701,
889
+ "learning_rate": 4.311222867447375e-05,
890
+ "loss": 0.8302,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.3204845120181692,
895
+ "grad_norm": 0.7407262921333313,
896
+ "learning_rate": 4.295967208013717e-05,
897
+ "loss": 0.7944,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.32300801211280045,
902
+ "grad_norm": 0.6641649007797241,
903
+ "learning_rate": 4.280572080035348e-05,
904
+ "loss": 0.7934,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.3255315122074317,
909
+ "grad_norm": 0.6886960864067078,
910
+ "learning_rate": 4.2650386790441696e-05,
911
+ "loss": 0.7839,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.32805501230206296,
916
+ "grad_norm": 0.6761602163314819,
917
+ "learning_rate": 4.2493682113098855e-05,
918
+ "loss": 0.7943,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.3305785123966942,
923
+ "grad_norm": 0.6564992666244507,
924
+ "learning_rate": 4.233561893746323e-05,
925
+ "loss": 0.8184,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.3331020124913255,
930
+ "grad_norm": 0.6928525567054749,
931
+ "learning_rate": 4.217620953816935e-05,
932
+ "loss": 0.7758,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.33562551258595674,
937
+ "grad_norm": 0.6335028409957886,
938
+ "learning_rate": 4.2015466294394756e-05,
939
+ "loss": 0.8091,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.338149012680588,
944
+ "grad_norm": 1.0897998809814453,
945
+ "learning_rate": 4.185340168889868e-05,
946
+ "loss": 0.7807,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.3406725127752192,
951
+ "grad_norm": 0.6639924645423889,
952
+ "learning_rate": 4.169002830705274e-05,
953
+ "loss": 0.7803,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.34319601286985046,
958
+ "grad_norm": 0.6235373020172119,
959
+ "learning_rate": 4.152535883586352e-05,
960
+ "loss": 0.7651,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.3457195129644817,
965
+ "grad_norm": 0.6909653544425964,
966
+ "learning_rate": 4.135940606298738e-05,
967
+ "loss": 0.7748,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.348243013059113,
972
+ "grad_norm": 0.6260821223258972,
973
+ "learning_rate": 4.119218287573743e-05,
974
+ "loss": 0.7624,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.35076651315374424,
979
+ "grad_norm": 0.6416032910346985,
980
+ "learning_rate": 4.102370226008271e-05,
981
+ "loss": 0.813,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 0.3532900132483755,
986
+ "grad_norm": 0.6173393726348877,
987
+ "learning_rate": 4.085397729963976e-05,
988
+ "loss": 0.7767,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 0.35581351334300676,
993
+ "grad_norm": 0.7046598792076111,
994
+ "learning_rate": 4.06830211746566e-05,
995
+ "loss": 0.8095,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 0.358337013437638,
1000
+ "grad_norm": 0.7577833533287048,
1001
+ "learning_rate": 4.051084716098921e-05,
1002
+ "loss": 0.7859,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 0.3608605135322693,
1007
+ "grad_norm": 0.6137785911560059,
1008
+ "learning_rate": 4.0337468629070496e-05,
1009
+ "loss": 0.7879,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 0.36338401362690054,
1014
+ "grad_norm": 0.6560728549957275,
1015
+ "learning_rate": 4.016289904287212e-05,
1016
+ "loss": 0.7811,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 0.36590751372153174,
1021
+ "grad_norm": 0.6869454383850098,
1022
+ "learning_rate": 3.9987151958858794e-05,
1023
+ "loss": 0.7954,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 0.368431013816163,
1028
+ "grad_norm": 0.6819769144058228,
1029
+ "learning_rate": 3.981024102493566e-05,
1030
+ "loss": 0.7607,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 0.37095451391079426,
1035
+ "grad_norm": 0.694311797618866,
1036
+ "learning_rate": 3.963217997938834e-05,
1037
+ "loss": 0.7926,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 0.3734780140054255,
1042
+ "grad_norm": 0.7280906438827515,
1043
+ "learning_rate": 3.945298264981614e-05,
1044
+ "loss": 0.7749,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 0.3760015141000568,
1049
+ "grad_norm": 0.6853066682815552,
1050
+ "learning_rate": 3.927266295205818e-05,
1051
+ "loss": 0.7927,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 0.37852501419468804,
1056
+ "grad_norm": 0.6501105427742004,
1057
+ "learning_rate": 3.9091234889112815e-05,
1058
+ "loss": 0.7895,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 0.3810485142893193,
1063
+ "grad_norm": 0.649364173412323,
1064
+ "learning_rate": 3.8908712550050154e-05,
1065
+ "loss": 0.7952,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 0.38357201438395055,
1070
+ "grad_norm": 0.6459169387817383,
1071
+ "learning_rate": 3.8725110108917975e-05,
1072
+ "loss": 0.7585,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 0.3860955144785818,
1077
+ "grad_norm": 0.6606280207633972,
1078
+ "learning_rate": 3.854044182364098e-05,
1079
+ "loss": 0.7851,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 0.3886190145732131,
1084
+ "grad_norm": 0.6776377558708191,
1085
+ "learning_rate": 3.835472203491367e-05,
1086
+ "loss": 0.7768,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 0.3911425146678443,
1091
+ "grad_norm": 0.6148844361305237,
1092
+ "learning_rate": 3.816796516508658e-05,
1093
+ "loss": 0.777,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 0.39366601476247554,
1098
+ "grad_norm": 0.5975064039230347,
1099
+ "learning_rate": 3.798018571704638e-05,
1100
+ "loss": 0.7677,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 0.3961895148571068,
1105
+ "grad_norm": 0.646436333656311,
1106
+ "learning_rate": 3.779139827308956e-05,
1107
+ "loss": 0.8021,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 0.39871301495173805,
1112
+ "grad_norm": 0.7195472121238708,
1113
+ "learning_rate": 3.760161749379008e-05,
1114
+ "loss": 0.7915,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 0.4012365150463693,
1119
+ "grad_norm": 0.647221565246582,
1120
+ "learning_rate": 3.7410858116860836e-05,
1121
+ "loss": 0.7696,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 0.40376001514100057,
1126
+ "grad_norm": 0.6950120329856873,
1127
+ "learning_rate": 3.721913495600923e-05,
1128
+ "loss": 0.7946,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 0.40628351523563183,
1133
+ "grad_norm": 0.5791555047035217,
1134
+ "learning_rate": 3.7026462899786726e-05,
1135
+ "loss": 0.7469,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 0.4088070153302631,
1140
+ "grad_norm": 0.6242396235466003,
1141
+ "learning_rate": 3.683285691043272e-05,
1142
+ "loss": 0.7894,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 0.41133051542489435,
1147
+ "grad_norm": 0.6625512838363647,
1148
+ "learning_rate": 3.663833202271257e-05,
1149
+ "loss": 0.7977,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 0.4138540155195256,
1154
+ "grad_norm": 0.653052806854248,
1155
+ "learning_rate": 3.6442903342750084e-05,
1156
+ "loss": 0.7394,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 0.4163775156141568,
1161
+ "grad_norm": 0.6416037678718567,
1162
+ "learning_rate": 3.624658604685443e-05,
1163
+ "loss": 0.7624,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 0.41890101570878807,
1168
+ "grad_norm": 0.7198112607002258,
1169
+ "learning_rate": 3.604939538034158e-05,
1170
+ "loss": 0.7779,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 0.42142451580341933,
1175
+ "grad_norm": 0.6925454139709473,
1176
+ "learning_rate": 3.585134665635041e-05,
1177
+ "loss": 0.7746,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 0.4239480158980506,
1182
+ "grad_norm": 0.6133943200111389,
1183
+ "learning_rate": 3.565245525465355e-05,
1184
+ "loss": 0.8115,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 0.42647151599268185,
1189
+ "grad_norm": 0.627083957195282,
1190
+ "learning_rate": 3.5452736620463064e-05,
1191
+ "loss": 0.7745,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 0.4289950160873131,
1196
+ "grad_norm": 0.7416812777519226,
1197
+ "learning_rate": 3.525220626323097e-05,
1198
+ "loss": 0.7565,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 0.43151851618194437,
1203
+ "grad_norm": 0.6600239276885986,
1204
+ "learning_rate": 3.5050879755444877e-05,
1205
+ "loss": 0.8086,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 0.4340420162765756,
1210
+ "grad_norm": 0.6868900060653687,
1211
+ "learning_rate": 3.484877273141866e-05,
1212
+ "loss": 0.7782,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 0.4365655163712069,
1217
+ "grad_norm": 0.6533142328262329,
1218
+ "learning_rate": 3.464590088607839e-05,
1219
+ "loss": 0.7917,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 0.43908901646583814,
1224
+ "grad_norm": 0.7071284055709839,
1225
+ "learning_rate": 3.444227997374345e-05,
1226
+ "loss": 0.7987,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 0.44161251656046935,
1231
+ "grad_norm": 0.7069833874702454,
1232
+ "learning_rate": 3.4237925806903184e-05,
1233
+ "loss": 0.782,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 0.4441360166551006,
1238
+ "grad_norm": 0.5870257616043091,
1239
+ "learning_rate": 3.403285425498889e-05,
1240
+ "loss": 0.7802,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 0.44665951674973187,
1245
+ "grad_norm": 0.7443609237670898,
1246
+ "learning_rate": 3.3827081243141534e-05,
1247
+ "loss": 0.751,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 0.4491830168443631,
1252
+ "grad_norm": 0.64288729429245,
1253
+ "learning_rate": 3.362062275097496e-05,
1254
+ "loss": 0.8028,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 0.4517065169389944,
1259
+ "grad_norm": 0.7132259607315063,
1260
+ "learning_rate": 3.341349481133507e-05,
1261
+ "loss": 0.7483,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 0.45423001703362564,
1266
+ "grad_norm": 0.6608093976974487,
1267
+ "learning_rate": 3.320571350905466e-05,
1268
+ "loss": 0.7861,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 0.4567535171282569,
1273
+ "grad_norm": 0.6749939322471619,
1274
+ "learning_rate": 3.299729497970444e-05,
1275
+ "loss": 0.8,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 0.45927701722288816,
1280
+ "grad_norm": 0.6308214664459229,
1281
+ "learning_rate": 3.278825540833995e-05,
1282
+ "loss": 0.7682,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 0.4618005173175194,
1287
+ "grad_norm": 0.6652118563652039,
1288
+ "learning_rate": 3.2578611028244656e-05,
1289
+ "loss": 0.7581,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 0.4643240174121507,
1294
+ "grad_norm": 0.6874011158943176,
1295
+ "learning_rate": 3.2368378119669363e-05,
1296
+ "loss": 0.7395,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 0.4668475175067819,
1301
+ "grad_norm": 0.580640971660614,
1302
+ "learning_rate": 3.215757300856796e-05,
1303
+ "loss": 0.7635,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 0.46937101760141314,
1308
+ "grad_norm": 0.6897201538085938,
1309
+ "learning_rate": 3.194621206532957e-05,
1310
+ "loss": 0.7999,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 0.4718945176960444,
1315
+ "grad_norm": 0.6152743697166443,
1316
+ "learning_rate": 3.173431170350732e-05,
1317
+ "loss": 0.7652,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 0.47441801779067566,
1322
+ "grad_norm": 0.7078354358673096,
1323
+ "learning_rate": 3.152188837854369e-05,
1324
+ "loss": 0.7985,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 0.4769415178853069,
1329
+ "grad_norm": 0.6471546292304993,
1330
+ "learning_rate": 3.130895858649264e-05,
1331
+ "loss": 0.7502,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 0.4794650179799382,
1336
+ "grad_norm": 0.7108110189437866,
1337
+ "learning_rate": 3.109553886273863e-05,
1338
+ "loss": 0.7777,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 0.48198851807456944,
1343
+ "grad_norm": 0.6540038585662842,
1344
+ "learning_rate": 3.088164578071246e-05,
1345
+ "loss": 0.7585,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 0.4845120181692007,
1350
+ "grad_norm": 0.6966577172279358,
1351
+ "learning_rate": 3.066729595060431e-05,
1352
+ "loss": 0.7459,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 0.48703551826383196,
1357
+ "grad_norm": 0.7039586901664734,
1358
+ "learning_rate": 3.0452506018073833e-05,
1359
+ "loss": 0.7829,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 0.4895590183584632,
1364
+ "grad_norm": 0.7935706973075867,
1365
+ "learning_rate": 3.0237292662957473e-05,
1366
+ "loss": 0.7635,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 0.4920825184530944,
1371
+ "grad_norm": 0.6353578567504883,
1372
+ "learning_rate": 3.0021672597973207e-05,
1373
+ "loss": 0.7573,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 0.4946060185477257,
1378
+ "grad_norm": 0.6605427265167236,
1379
+ "learning_rate": 2.9805662567422676e-05,
1380
+ "loss": 0.7915,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 0.49712951864235694,
1385
+ "grad_norm": 0.6967743635177612,
1386
+ "learning_rate": 2.9589279345890895e-05,
1387
+ "loss": 0.7787,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 0.4996530187369882,
1392
+ "grad_norm": 0.566273033618927,
1393
+ "learning_rate": 2.9372539736943577e-05,
1394
+ "loss": 0.7719,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 0.5021765188316195,
1399
+ "grad_norm": 0.596185028553009,
1400
+ "learning_rate": 2.9155460571822245e-05,
1401
+ "loss": 0.759,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 0.5047000189262507,
1406
+ "grad_norm": 0.6854886412620544,
1407
+ "learning_rate": 2.893805870813717e-05,
1408
+ "loss": 0.7461,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 0.5072235190208819,
1413
+ "grad_norm": 0.6499455571174622,
1414
+ "learning_rate": 2.872035102855826e-05,
1415
+ "loss": 0.7586,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 0.5097470191155132,
1420
+ "grad_norm": 0.6669695377349854,
1421
+ "learning_rate": 2.850235443950402e-05,
1422
+ "loss": 0.7319,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 0.5122705192101444,
1427
+ "grad_norm": 0.6255702972412109,
1428
+ "learning_rate": 2.8284085869828665e-05,
1429
+ "loss": 0.7687,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 0.5147940193047758,
1434
+ "grad_norm": 0.645270824432373,
1435
+ "learning_rate": 2.8065562269507463e-05,
1436
+ "loss": 0.7764,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 0.517317519399407,
1441
+ "grad_norm": 0.7418912053108215,
1442
+ "learning_rate": 2.7846800608320485e-05,
1443
+ "loss": 0.7571,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 0.5198410194940383,
1448
+ "grad_norm": 0.6680746674537659,
1449
+ "learning_rate": 2.7627817874534762e-05,
1450
+ "loss": 0.7489,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 0.5223645195886695,
1455
+ "grad_norm": 0.6707837581634521,
1456
+ "learning_rate": 2.7408631073585068e-05,
1457
+ "loss": 0.7345,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 0.5248880196833008,
1462
+ "grad_norm": 0.664960503578186,
1463
+ "learning_rate": 2.7189257226753305e-05,
1464
+ "loss": 0.7602,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 0.527411519777932,
1469
+ "grad_norm": 0.618732213973999,
1470
+ "learning_rate": 2.696971336984672e-05,
1471
+ "loss": 0.7831,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 0.5299350198725632,
1476
+ "grad_norm": 0.7285112142562866,
1477
+ "learning_rate": 2.6750016551874945e-05,
1478
+ "loss": 0.7575,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 0.5324585199671945,
1483
+ "grad_norm": 0.6303609013557434,
1484
+ "learning_rate": 2.6530183833726025e-05,
1485
+ "loss": 0.7567,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 0.5349820200618257,
1490
+ "grad_norm": 0.7151260375976562,
1491
+ "learning_rate": 2.6310232286841546e-05,
1492
+ "loss": 0.7876,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 0.537505520156457,
1497
+ "grad_norm": 0.6547929048538208,
1498
+ "learning_rate": 2.609017899189092e-05,
1499
+ "loss": 0.7723,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 0.5400290202510882,
1504
+ "grad_norm": 0.6668947339057922,
1505
+ "learning_rate": 2.587004103744495e-05,
1506
+ "loss": 0.7261,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 0.5425525203457195,
1511
+ "grad_norm": 0.5897696614265442,
1512
+ "learning_rate": 2.564983551864882e-05,
1513
+ "loss": 0.7386,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 0.5450760204403508,
1518
+ "grad_norm": 0.7253137826919556,
1519
+ "learning_rate": 2.54295795358945e-05,
1520
+ "loss": 0.762,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 0.5475995205349821,
1525
+ "grad_norm": 0.6665747761726379,
1526
+ "learning_rate": 2.5209290193492834e-05,
1527
+ "loss": 0.7558,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 0.5501230206296133,
1532
+ "grad_norm": 0.6269178986549377,
1533
+ "learning_rate": 2.4988984598345247e-05,
1534
+ "loss": 0.7248,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 0.5526465207242445,
1539
+ "grad_norm": 0.6443243622779846,
1540
+ "learning_rate": 2.4768679858615304e-05,
1541
+ "loss": 0.7699,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 0.5551700208188758,
1546
+ "grad_norm": 0.7323073744773865,
1547
+ "learning_rate": 2.454839308240014e-05,
1548
+ "loss": 0.796,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 0.557693520913507,
1553
+ "grad_norm": 0.6538411974906921,
1554
+ "learning_rate": 2.4328141376401903e-05,
1555
+ "loss": 0.7521,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 0.5602170210081383,
1560
+ "grad_norm": 0.638306200504303,
1561
+ "learning_rate": 2.4107941844599312e-05,
1562
+ "loss": 0.736,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 0.5627405211027695,
1567
+ "grad_norm": 0.6431130170822144,
1568
+ "learning_rate": 2.3887811586919424e-05,
1569
+ "loss": 0.7688,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 0.5652640211974008,
1574
+ "grad_norm": 0.6741809844970703,
1575
+ "learning_rate": 2.3667767697909694e-05,
1576
+ "loss": 0.7445,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 0.567787521292032,
1581
+ "grad_norm": 0.6638673543930054,
1582
+ "learning_rate": 2.3447827265410517e-05,
1583
+ "loss": 0.7898,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 0.5703110213866633,
1588
+ "grad_norm": 0.708502471446991,
1589
+ "learning_rate": 2.3228007369228178e-05,
1590
+ "loss": 0.8121,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 0.5728345214812945,
1595
+ "grad_norm": 0.6407279372215271,
1596
+ "learning_rate": 2.3008325079808576e-05,
1597
+ "loss": 0.7682,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 0.5753580215759259,
1602
+ "grad_norm": 0.65432208776474,
1603
+ "learning_rate": 2.2788797456911503e-05,
1604
+ "loss": 0.7305,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 0.5778815216705571,
1609
+ "grad_norm": 0.7159484624862671,
1610
+ "learning_rate": 2.2569441548285934e-05,
1611
+ "loss": 0.7618,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 0.5804050217651883,
1616
+ "grad_norm": 0.5184557437896729,
1617
+ "learning_rate": 2.2350274388346064e-05,
1618
+ "loss": 0.7192,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 0.5829285218598196,
1623
+ "grad_norm": 0.6150662302970886,
1624
+ "learning_rate": 2.213131299684858e-05,
1625
+ "loss": 0.7764,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 0.5854520219544508,
1630
+ "grad_norm": 0.708900511264801,
1631
+ "learning_rate": 2.191257437757086e-05,
1632
+ "loss": 0.7408,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 0.5879755220490821,
1637
+ "grad_norm": 0.5827603340148926,
1638
+ "learning_rate": 2.16940755169906e-05,
1639
+ "loss": 0.7701,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 0.5904990221437133,
1644
+ "grad_norm": 0.7515769600868225,
1645
+ "learning_rate": 2.1475833382966647e-05,
1646
+ "loss": 0.805,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 0.5930225222383446,
1651
+ "grad_norm": 0.6381510496139526,
1652
+ "learning_rate": 2.1257864923421404e-05,
1653
+ "loss": 0.7889,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 0.5955460223329758,
1658
+ "grad_norm": 0.6384143829345703,
1659
+ "learning_rate": 2.1040187065024605e-05,
1660
+ "loss": 0.7111,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 0.5980695224276071,
1665
+ "grad_norm": 0.6297293305397034,
1666
+ "learning_rate": 2.0822816711878978e-05,
1667
+ "loss": 0.7759,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 0.6005930225222383,
1672
+ "grad_norm": 0.6517510414123535,
1673
+ "learning_rate": 2.0605770744207413e-05,
1674
+ "loss": 0.7514,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 0.6031165226168695,
1679
+ "grad_norm": 0.6666356325149536,
1680
+ "learning_rate": 2.0389066017042192e-05,
1681
+ "loss": 0.7308,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 0.6056400227115009,
1686
+ "grad_norm": 0.8132819533348083,
1687
+ "learning_rate": 2.0172719358916042e-05,
1688
+ "loss": 0.7363,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 0.6081635228061321,
1693
+ "grad_norm": 0.7209652662277222,
1694
+ "learning_rate": 1.9956747570555288e-05,
1695
+ "loss": 0.7838,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 0.6106870229007634,
1700
+ "grad_norm": 0.6177300214767456,
1701
+ "learning_rate": 1.9741167423575186e-05,
1702
+ "loss": 0.7153,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 0.6132105229953946,
1707
+ "grad_norm": 0.6164495944976807,
1708
+ "learning_rate": 1.9525995659177484e-05,
1709
+ "loss": 0.7502,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 0.6157340230900259,
1714
+ "grad_norm": 0.6001858115196228,
1715
+ "learning_rate": 1.9311248986850365e-05,
1716
+ "loss": 0.7396,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 0.6182575231846571,
1721
+ "grad_norm": 0.661919116973877,
1722
+ "learning_rate": 1.9096944083070866e-05,
1723
+ "loss": 0.7557,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 0.6207810232792884,
1728
+ "grad_norm": 0.6734655499458313,
1729
+ "learning_rate": 1.8883097590009775e-05,
1730
+ "loss": 0.7659,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 0.6233045233739196,
1735
+ "grad_norm": 0.6683171391487122,
1736
+ "learning_rate": 1.866972611423936e-05,
1737
+ "loss": 0.7464,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 0.6258280234685509,
1742
+ "grad_norm": 0.7079278826713562,
1743
+ "learning_rate": 1.8456846225443648e-05,
1744
+ "loss": 0.7051,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 0.6283515235631821,
1749
+ "grad_norm": 0.6441357731819153,
1750
+ "learning_rate": 1.8244474455131792e-05,
1751
+ "loss": 0.7441,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 0.6308750236578133,
1756
+ "grad_norm": 0.7199136018753052,
1757
+ "learning_rate": 1.8032627295354183e-05,
1758
+ "loss": 0.7419,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 0.6333985237524447,
1763
+ "grad_norm": 0.7727274894714355,
1764
+ "learning_rate": 1.7821321197421837e-05,
1765
+ "loss": 0.785,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 0.6359220238470759,
1770
+ "grad_norm": 0.6691886782646179,
1771
+ "learning_rate": 1.761057257062876e-05,
1772
+ "loss": 0.7576,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 0.6384455239417072,
1777
+ "grad_norm": 0.5676743388175964,
1778
+ "learning_rate": 1.740039778097772e-05,
1779
+ "loss": 0.7151,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 0.6409690240363384,
1784
+ "grad_norm": 0.6777900457382202,
1785
+ "learning_rate": 1.7190813149909274e-05,
1786
+ "loss": 0.7477,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 0.6434925241309697,
1791
+ "grad_norm": 0.691109836101532,
1792
+ "learning_rate": 1.6981834953034344e-05,
1793
+ "loss": 0.7536,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 0.6460160242256009,
1798
+ "grad_norm": 0.7271637916564941,
1799
+ "learning_rate": 1.677347941887028e-05,
1800
+ "loss": 0.7181,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 0.6485395243202322,
1805
+ "grad_norm": 0.693095326423645,
1806
+ "learning_rate": 1.656576272758061e-05,
1807
+ "loss": 0.7703,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 0.6510630244148634,
1812
+ "grad_norm": 0.6617145538330078,
1813
+ "learning_rate": 1.6358701009718577e-05,
1814
+ "loss": 0.7505,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 0.6535865245094946,
1819
+ "grad_norm": 0.5836735963821411,
1820
+ "learning_rate": 1.615231034497444e-05,
1821
+ "loss": 0.7629,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 0.6561100246041259,
1826
+ "grad_norm": 0.767706036567688,
1827
+ "learning_rate": 1.5946606760926865e-05,
1828
+ "loss": 0.7311,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 0.6586335246987571,
1833
+ "grad_norm": 1.1599899530410767,
1834
+ "learning_rate": 1.574160623179816e-05,
1835
+ "loss": 0.7538,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 0.6611570247933884,
1840
+ "grad_norm": 0.6588570475578308,
1841
+ "learning_rate": 1.553732467721392e-05,
1842
+ "loss": 0.7181,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 0.6636805248880197,
1847
+ "grad_norm": 0.5837569832801819,
1848
+ "learning_rate": 1.5333777960966616e-05,
1849
+ "loss": 0.7218,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 0.666204024982651,
1854
+ "grad_norm": 0.5983703136444092,
1855
+ "learning_rate": 1.5130981889783795e-05,
1856
+ "loss": 0.728,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 0.6687275250772822,
1861
+ "grad_norm": 0.6551673412322998,
1862
+ "learning_rate": 1.4928952212100483e-05,
1863
+ "loss": 0.7561,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 0.6712510251719135,
1868
+ "grad_norm": 0.5981004238128662,
1869
+ "learning_rate": 1.4727704616836296e-05,
1870
+ "loss": 0.7553,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 0.6737745252665447,
1875
+ "grad_norm": 0.6593780517578125,
1876
+ "learning_rate": 1.4527254732177043e-05,
1877
+ "loss": 0.7428,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 0.676298025361176,
1882
+ "grad_norm": 0.6018021702766418,
1883
+ "learning_rate": 1.4327618124361114e-05,
1884
+ "loss": 0.7489,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 0.6788215254558072,
1889
+ "grad_norm": 0.629327118396759,
1890
+ "learning_rate": 1.412881029647065e-05,
1891
+ "loss": 0.7199,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 0.6813450255504384,
1896
+ "grad_norm": 0.616880476474762,
1897
+ "learning_rate": 1.3930846687227664e-05,
1898
+ "loss": 0.7236,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 0.6838685256450697,
1903
+ "grad_norm": 0.6667315363883972,
1904
+ "learning_rate": 1.3733742669795049e-05,
1905
+ "loss": 0.7679,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 0.6863920257397009,
1910
+ "grad_norm": 0.7159212231636047,
1911
+ "learning_rate": 1.3537513550582853e-05,
1912
+ "loss": 0.7577,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 0.6889155258343322,
1917
+ "grad_norm": 0.5977271199226379,
1918
+ "learning_rate": 1.3342174568059527e-05,
1919
+ "loss": 0.7289,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 0.6914390259289634,
1924
+ "grad_norm": 0.6134091019630432,
1925
+ "learning_rate": 1.3147740891568661e-05,
1926
+ "loss": 0.7159,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 0.6939625260235948,
1931
+ "grad_norm": 0.6235146522521973,
1932
+ "learning_rate": 1.2954227620150904e-05,
1933
+ "loss": 0.7587,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 0.696486026118226,
1938
+ "grad_norm": 0.6821407079696655,
1939
+ "learning_rate": 1.2761649781371479e-05,
1940
+ "loss": 0.7366,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 0.6990095262128573,
1945
+ "grad_norm": 0.6241364479064941,
1946
+ "learning_rate": 1.257002233015318e-05,
1947
+ "loss": 0.7587,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 0.7015330263074885,
1952
+ "grad_norm": 0.6628735065460205,
1953
+ "learning_rate": 1.2379360147614994e-05,
1954
+ "loss": 0.7289,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 0.7040565264021197,
1959
+ "grad_norm": 0.6374642252922058,
1960
+ "learning_rate": 1.2189678039916532e-05,
1961
+ "loss": 0.7036,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 0.706580026496751,
1966
+ "grad_norm": 0.5973037481307983,
1967
+ "learning_rate": 1.2000990737108225e-05,
1968
+ "loss": 0.723,
1969
+ "step": 2800
1970
+ },
1971
+ {
1972
+ "epoch": 0.7091035265913822,
1973
+ "grad_norm": 0.7454132437705994,
1974
+ "learning_rate": 1.1813312891987392e-05,
1975
+ "loss": 0.7631,
1976
+ "step": 2810
1977
+ },
1978
+ {
1979
+ "epoch": 0.7116270266860135,
1980
+ "grad_norm": 0.6454845070838928,
1981
+ "learning_rate": 1.1626659078960424e-05,
1982
+ "loss": 0.7357,
1983
+ "step": 2820
1984
+ },
1985
+ {
1986
+ "epoch": 0.7141505267806447,
1987
+ "grad_norm": 0.616027295589447,
1988
+ "learning_rate": 1.1441043792910936e-05,
1989
+ "loss": 0.7326,
1990
+ "step": 2830
1991
+ },
1992
+ {
1993
+ "epoch": 0.716674026875276,
1994
+ "grad_norm": 0.7227725386619568,
1995
+ "learning_rate": 1.1256481448074179e-05,
1996
+ "loss": 0.7293,
1997
+ "step": 2840
1998
+ },
1999
+ {
2000
+ "epoch": 0.7191975269699072,
2001
+ "grad_norm": 0.765404999256134,
2002
+ "learning_rate": 1.1072986376917638e-05,
2003
+ "loss": 0.7395,
2004
+ "step": 2850
2005
+ },
2006
+ {
2007
+ "epoch": 0.7217210270645386,
2008
+ "grad_norm": 0.6478826403617859,
2009
+ "learning_rate": 1.0890572829028087e-05,
2010
+ "loss": 0.7734,
2011
+ "step": 2860
2012
+ },
2013
+ {
2014
+ "epoch": 0.7242445271591698,
2015
+ "grad_norm": 0.6000937819480896,
2016
+ "learning_rate": 1.0709254970004937e-05,
2017
+ "loss": 0.7247,
2018
+ "step": 2870
2019
+ },
2020
+ {
2021
+ "epoch": 0.7267680272538011,
2022
+ "grad_norm": 0.5255608558654785,
2023
+ "learning_rate": 1.0529046880360263e-05,
2024
+ "loss": 0.7219,
2025
+ "step": 2880
2026
+ },
2027
+ {
2028
+ "epoch": 0.7292915273484323,
2029
+ "grad_norm": 0.5780526995658875,
2030
+ "learning_rate": 1.034996255442529e-05,
2031
+ "loss": 0.7658,
2032
+ "step": 2890
2033
+ },
2034
+ {
2035
+ "epoch": 0.7318150274430635,
2036
+ "grad_norm": 0.5964454412460327,
2037
+ "learning_rate": 1.0172015899263712e-05,
2038
+ "loss": 0.7363,
2039
+ "step": 2900
2040
+ },
2041
+ {
2042
+ "epoch": 0.7343385275376948,
2043
+ "grad_norm": 0.6541391015052795,
2044
+ "learning_rate": 9.995220733591639e-06,
2045
+ "loss": 0.7214,
2046
+ "step": 2910
2047
+ },
2048
+ {
2049
+ "epoch": 0.736862027632326,
2050
+ "grad_norm": 0.572470486164093,
2051
+ "learning_rate": 9.819590786704572e-06,
2052
+ "loss": 0.7559,
2053
+ "step": 2920
2054
+ },
2055
+ {
2056
+ "epoch": 0.7393855277269573,
2057
+ "grad_norm": 0.6316998600959778,
2058
+ "learning_rate": 9.645139697411149e-06,
2059
+ "loss": 0.7289,
2060
+ "step": 2930
2061
+ },
2062
+ {
2063
+ "epoch": 0.7419090278215885,
2064
+ "grad_norm": 0.6283255815505981,
2065
+ "learning_rate": 9.471881012974071e-06,
2066
+ "loss": 0.754,
2067
+ "step": 2940
2068
+ },
2069
+ {
2070
+ "epoch": 0.7444325279162198,
2071
+ "grad_norm": 0.6679040193557739,
2072
+ "learning_rate": 9.299828188058013e-06,
2073
+ "loss": 0.7417,
2074
+ "step": 2950
2075
+ },
2076
+ {
2077
+ "epoch": 0.746956028010851,
2078
+ "grad_norm": 0.6345584988594055,
2079
+ "learning_rate": 9.128994583684838e-06,
2080
+ "loss": 0.7222,
2081
+ "step": 2960
2082
+ },
2083
+ {
2084
+ "epoch": 0.7494795281054824,
2085
+ "grad_norm": 0.6412184238433838,
2086
+ "learning_rate": 8.959393466195972e-06,
2087
+ "loss": 0.7713,
2088
+ "step": 2970
2089
+ },
2090
+ {
2091
+ "epoch": 0.7520030282001136,
2092
+ "grad_norm": 0.6120537519454956,
2093
+ "learning_rate": 8.791038006222233e-06,
2094
+ "loss": 0.7494,
2095
+ "step": 2980
2096
+ },
2097
+ {
2098
+ "epoch": 0.7545265282947448,
2099
+ "grad_norm": 0.6384350657463074,
2100
+ "learning_rate": 8.623941277660994e-06,
2101
+ "loss": 0.7241,
2102
+ "step": 2990
2103
+ },
2104
+ {
2105
+ "epoch": 0.7570500283893761,
2106
+ "grad_norm": 0.6902556419372559,
2107
+ "learning_rate": 8.458116256660981e-06,
2108
+ "loss": 0.7677,
2109
+ "step": 3000
2110
+ },
2111
+ {
2112
+ "epoch": 0.7595735284840073,
2113
+ "grad_norm": 0.6172592639923096,
2114
+ "learning_rate": 8.293575820614508e-06,
2115
+ "loss": 0.741,
2116
+ "step": 3010
2117
+ },
2118
+ {
2119
+ "epoch": 0.7620970285786386,
2120
+ "grad_norm": 0.6649114489555359,
2121
+ "learning_rate": 8.130332747157542e-06,
2122
+ "loss": 0.6986,
2123
+ "step": 3020
2124
+ },
2125
+ {
2126
+ "epoch": 0.7646205286732698,
2127
+ "grad_norm": 0.8120855689048767,
2128
+ "learning_rate": 7.968399713177366e-06,
2129
+ "loss": 0.7496,
2130
+ "step": 3030
2131
+ },
2132
+ {
2133
+ "epoch": 0.7671440287679011,
2134
+ "grad_norm": 0.6434275507926941,
2135
+ "learning_rate": 7.807789293828204e-06,
2136
+ "loss": 0.7617,
2137
+ "step": 3040
2138
+ },
2139
+ {
2140
+ "epoch": 0.7696675288625323,
2141
+ "grad_norm": 0.6495864987373352,
2142
+ "learning_rate": 7.648513961554607e-06,
2143
+ "loss": 0.6993,
2144
+ "step": 3050
2145
+ },
2146
+ {
2147
+ "epoch": 0.7721910289571636,
2148
+ "grad_norm": 0.5868855714797974,
2149
+ "learning_rate": 7.4905860851229605e-06,
2150
+ "loss": 0.7572,
2151
+ "step": 3060
2152
+ },
2153
+ {
2154
+ "epoch": 0.7747145290517948,
2155
+ "grad_norm": 0.689618706703186,
2156
+ "learning_rate": 7.334017928660902e-06,
2157
+ "loss": 0.7454,
2158
+ "step": 3070
2159
+ },
2160
+ {
2161
+ "epoch": 0.7772380291464261,
2162
+ "grad_norm": 0.6041099429130554,
2163
+ "learning_rate": 7.1788216507049865e-06,
2164
+ "loss": 0.7309,
2165
+ "step": 3080
2166
+ },
2167
+ {
2168
+ "epoch": 0.7797615292410573,
2169
+ "grad_norm": 0.6858187317848206,
2170
+ "learning_rate": 7.0250093032564494e-06,
2171
+ "loss": 0.6921,
2172
+ "step": 3090
2173
+ },
2174
+ {
2175
+ "epoch": 0.7822850293356886,
2176
+ "grad_norm": 0.625678539276123,
2177
+ "learning_rate": 6.872592830845339e-06,
2178
+ "loss": 0.7257,
2179
+ "step": 3100
2180
+ },
2181
+ {
2182
+ "epoch": 0.7848085294303199,
2183
+ "grad_norm": 0.574103593826294,
2184
+ "learning_rate": 6.72158406960289e-06,
2185
+ "loss": 0.7532,
2186
+ "step": 3110
2187
+ },
2188
+ {
2189
+ "epoch": 0.7873320295249511,
2190
+ "grad_norm": 0.5581086874008179,
2191
+ "learning_rate": 6.571994746342439e-06,
2192
+ "loss": 0.7354,
2193
+ "step": 3120
2194
+ },
2195
+ {
2196
+ "epoch": 0.7898555296195824,
2197
+ "grad_norm": 0.6243663430213928,
2198
+ "learning_rate": 6.4238364776486785e-06,
2199
+ "loss": 0.7154,
2200
+ "step": 3130
2201
+ },
2202
+ {
2203
+ "epoch": 0.7923790297142136,
2204
+ "grad_norm": 0.6376320719718933,
2205
+ "learning_rate": 6.277120768975644e-06,
2206
+ "loss": 0.7647,
2207
+ "step": 3140
2208
+ },
2209
+ {
2210
+ "epoch": 0.7949025298088449,
2211
+ "grad_norm": 0.7120991945266724,
2212
+ "learning_rate": 6.131859013753155e-06,
2213
+ "loss": 0.7199,
2214
+ "step": 3150
2215
+ },
2216
+ {
2217
+ "epoch": 0.7974260299034761,
2218
+ "grad_norm": 0.6970154643058777,
2219
+ "learning_rate": 5.988062492502117e-06,
2220
+ "loss": 0.7067,
2221
+ "step": 3160
2222
+ },
2223
+ {
2224
+ "epoch": 0.7999495299981074,
2225
+ "grad_norm": 0.5977396368980408,
2226
+ "learning_rate": 5.8457423719584435e-06,
2227
+ "loss": 0.7244,
2228
+ "step": 3170
2229
+ },
2230
+ {
2231
+ "epoch": 0.8024730300927386,
2232
+ "grad_norm": 0.6535403728485107,
2233
+ "learning_rate": 5.704909704205949e-06,
2234
+ "loss": 0.7529,
2235
+ "step": 3180
2236
+ },
2237
+ {
2238
+ "epoch": 0.8049965301873698,
2239
+ "grad_norm": 0.6335867643356323,
2240
+ "learning_rate": 5.565575425818054e-06,
2241
+ "loss": 0.7417,
2242
+ "step": 3190
2243
+ },
2244
+ {
2245
+ "epoch": 0.8075200302820011,
2246
+ "grad_norm": 0.6783677339553833,
2247
+ "learning_rate": 5.427750357008468e-06,
2248
+ "loss": 0.7037,
2249
+ "step": 3200
2250
+ },
2251
+ {
2252
+ "epoch": 0.8100435303766323,
2253
+ "grad_norm": 0.6452818512916565,
2254
+ "learning_rate": 5.291445200790982e-06,
2255
+ "loss": 0.7491,
2256
+ "step": 3210
2257
+ },
2258
+ {
2259
+ "epoch": 0.8125670304712637,
2260
+ "grad_norm": 0.6002216935157776,
2261
+ "learning_rate": 5.156670542148267e-06,
2262
+ "loss": 0.7501,
2263
+ "step": 3220
2264
+ },
2265
+ {
2266
+ "epoch": 0.8150905305658949,
2267
+ "grad_norm": 0.7028263211250305,
2268
+ "learning_rate": 5.023436847209887e-06,
2269
+ "loss": 0.741,
2270
+ "step": 3230
2271
+ },
2272
+ {
2273
+ "epoch": 0.8176140306605262,
2274
+ "grad_norm": 0.6382498145103455,
2275
+ "learning_rate": 4.891754462439557e-06,
2276
+ "loss": 0.7066,
2277
+ "step": 3240
2278
+ },
2279
+ {
2280
+ "epoch": 0.8201375307551574,
2281
+ "grad_norm": 0.6723865270614624,
2282
+ "learning_rate": 4.761633613831645e-06,
2283
+ "loss": 0.7426,
2284
+ "step": 3250
2285
+ },
2286
+ {
2287
+ "epoch": 0.8226610308497887,
2288
+ "grad_norm": 0.7076628804206848,
2289
+ "learning_rate": 4.6330844061170914e-06,
2290
+ "loss": 0.7148,
2291
+ "step": 3260
2292
+ },
2293
+ {
2294
+ "epoch": 0.8251845309444199,
2295
+ "grad_norm": 0.6604047417640686,
2296
+ "learning_rate": 4.506116821978662e-06,
2297
+ "loss": 0.7268,
2298
+ "step": 3270
2299
+ },
2300
+ {
2301
+ "epoch": 0.8277080310390512,
2302
+ "grad_norm": 0.5714926719665527,
2303
+ "learning_rate": 4.380740721275786e-06,
2304
+ "loss": 0.7508,
2305
+ "step": 3280
2306
+ },
2307
+ {
2308
+ "epoch": 0.8302315311336824,
2309
+ "grad_norm": 0.6624537110328674,
2310
+ "learning_rate": 4.25696584027882e-06,
2311
+ "loss": 0.7313,
2312
+ "step": 3290
2313
+ },
2314
+ {
2315
+ "epoch": 0.8327550312283136,
2316
+ "grad_norm": 0.7087505459785461,
2317
+ "learning_rate": 4.134801790913006e-06,
2318
+ "loss": 0.6936,
2319
+ "step": 3300
2320
+ },
2321
+ {
2322
+ "epoch": 0.8352785313229449,
2323
+ "grad_norm": 0.7512862682342529,
2324
+ "learning_rate": 4.014258060012005e-06,
2325
+ "loss": 0.7525,
2326
+ "step": 3310
2327
+ },
2328
+ {
2329
+ "epoch": 0.8378020314175761,
2330
+ "grad_norm": 0.5958043932914734,
2331
+ "learning_rate": 3.895344008581222e-06,
2332
+ "loss": 0.7235,
2333
+ "step": 3320
2334
+ },
2335
+ {
2336
+ "epoch": 0.8403255315122075,
2337
+ "grad_norm": 0.7010710835456848,
2338
+ "learning_rate": 3.7780688710708223e-06,
2339
+ "loss": 0.7122,
2340
+ "step": 3330
2341
+ },
2342
+ {
2343
+ "epoch": 0.8428490316068387,
2344
+ "grad_norm": 0.64909827709198,
2345
+ "learning_rate": 3.6624417546586574e-06,
2346
+ "loss": 0.6846,
2347
+ "step": 3340
2348
+ },
2349
+ {
2350
+ "epoch": 0.84537253170147,
2351
+ "grad_norm": 0.7238036394119263,
2352
+ "learning_rate": 3.548471638542991e-06,
2353
+ "loss": 0.7514,
2354
+ "step": 3350
2355
+ },
2356
+ {
2357
+ "epoch": 0.8478960317961012,
2358
+ "grad_norm": 0.6112589240074158,
2359
+ "learning_rate": 3.436167373245247e-06,
2360
+ "loss": 0.7297,
2361
+ "step": 3360
2362
+ },
2363
+ {
2364
+ "epoch": 0.8504195318907325,
2365
+ "grad_norm": 0.6378879547119141,
2366
+ "learning_rate": 3.325537679922672e-06,
2367
+ "loss": 0.7429,
2368
+ "step": 3370
2369
+ },
2370
+ {
2371
+ "epoch": 0.8529430319853637,
2372
+ "grad_norm": 0.7128148674964905,
2373
+ "learning_rate": 3.2165911496911173e-06,
2374
+ "loss": 0.7168,
2375
+ "step": 3380
2376
+ },
2377
+ {
2378
+ "epoch": 0.8554665320799949,
2379
+ "grad_norm": 0.6448369026184082,
2380
+ "learning_rate": 3.1093362429578414e-06,
2381
+ "loss": 0.7358,
2382
+ "step": 3390
2383
+ },
2384
+ {
2385
+ "epoch": 0.8579900321746262,
2386
+ "grad_norm": 0.5888521075248718,
2387
+ "learning_rate": 3.0037812887645483e-06,
2388
+ "loss": 0.7522,
2389
+ "step": 3400
2390
+ },
2391
+ {
2392
+ "epoch": 0.8605135322692574,
2393
+ "grad_norm": 0.5976009368896484,
2394
+ "learning_rate": 2.8999344841405373e-06,
2395
+ "loss": 0.7222,
2396
+ "step": 3410
2397
+ },
2398
+ {
2399
+ "epoch": 0.8630370323638887,
2400
+ "grad_norm": 0.6030629277229309,
2401
+ "learning_rate": 2.7978038934662024e-06,
2402
+ "loss": 0.7157,
2403
+ "step": 3420
2404
+ },
2405
+ {
2406
+ "epoch": 0.8655605324585199,
2407
+ "grad_norm": 0.6424097418785095,
2408
+ "learning_rate": 2.697397447846725e-06,
2409
+ "loss": 0.7324,
2410
+ "step": 3430
2411
+ },
2412
+ {
2413
+ "epoch": 0.8680840325531513,
2414
+ "grad_norm": 0.6089041829109192,
2415
+ "learning_rate": 2.5987229444962237e-06,
2416
+ "loss": 0.7447,
2417
+ "step": 3440
2418
+ },
2419
+ {
2420
+ "epoch": 0.8706075326477825,
2421
+ "grad_norm": 0.6227433681488037,
2422
+ "learning_rate": 2.501788046132203e-06,
2423
+ "loss": 0.7552,
2424
+ "step": 3450
2425
+ },
2426
+ {
2427
+ "epoch": 0.8731310327424138,
2428
+ "grad_norm": 0.5971252918243408,
2429
+ "learning_rate": 2.4066002803805386e-06,
2430
+ "loss": 0.7276,
2431
+ "step": 3460
2432
+ },
2433
+ {
2434
+ "epoch": 0.875654532837045,
2435
+ "grad_norm": 0.6682915091514587,
2436
+ "learning_rate": 2.313167039190861e-06,
2437
+ "loss": 0.7312,
2438
+ "step": 3470
2439
+ },
2440
+ {
2441
+ "epoch": 0.8781780329316763,
2442
+ "grad_norm": 0.6341772079467773,
2443
+ "learning_rate": 2.2214955782625752e-06,
2444
+ "loss": 0.7303,
2445
+ "step": 3480
2446
+ },
2447
+ {
2448
+ "epoch": 0.8807015330263075,
2449
+ "grad_norm": 0.6950182914733887,
2450
+ "learning_rate": 2.1315930164813507e-06,
2451
+ "loss": 0.757,
2452
+ "step": 3490
2453
+ },
2454
+ {
2455
+ "epoch": 0.8832250331209387,
2456
+ "grad_norm": 0.6251794099807739,
2457
+ "learning_rate": 2.0434663353663536e-06,
2458
+ "loss": 0.7293,
2459
+ "step": 3500
2460
+ },
2461
+ {
2462
+ "epoch": 0.88574853321557,
2463
+ "grad_norm": 0.6550153493881226,
2464
+ "learning_rate": 1.9571223785280314e-06,
2465
+ "loss": 0.7323,
2466
+ "step": 3510
2467
+ },
2468
+ {
2469
+ "epoch": 0.8882720333102012,
2470
+ "grad_norm": 0.6896747350692749,
2471
+ "learning_rate": 1.8725678511367001e-06,
2472
+ "loss": 0.7429,
2473
+ "step": 3520
2474
+ },
2475
+ {
2476
+ "epoch": 0.8907955334048325,
2477
+ "grad_norm": 0.6337852478027344,
2478
+ "learning_rate": 1.789809319401825e-06,
2479
+ "loss": 0.743,
2480
+ "step": 3530
2481
+ },
2482
+ {
2483
+ "epoch": 0.8933190334994637,
2484
+ "grad_norm": 0.6342365145683289,
2485
+ "learning_rate": 1.7088532100621224e-06,
2486
+ "loss": 0.7093,
2487
+ "step": 3540
2488
+ },
2489
+ {
2490
+ "epoch": 0.895842533594095,
2491
+ "grad_norm": 0.6229385137557983,
2492
+ "learning_rate": 1.629705809886467e-06,
2493
+ "loss": 0.7111,
2494
+ "step": 3550
2495
+ },
2496
+ {
2497
+ "epoch": 0.8983660336887263,
2498
+ "grad_norm": 0.5831491947174072,
2499
+ "learning_rate": 1.5523732651857082e-06,
2500
+ "loss": 0.7267,
2501
+ "step": 3560
2502
+ },
2503
+ {
2504
+ "epoch": 0.9008895337833576,
2505
+ "grad_norm": 0.6794403791427612,
2506
+ "learning_rate": 1.4768615813353398e-06,
2507
+ "loss": 0.7302,
2508
+ "step": 3570
2509
+ },
2510
+ {
2511
+ "epoch": 0.9034130338779888,
2512
+ "grad_norm": 0.5871224403381348,
2513
+ "learning_rate": 1.4031766223091603e-06,
2514
+ "loss": 0.7284,
2515
+ "step": 3580
2516
+ },
2517
+ {
2518
+ "epoch": 0.90593653397262,
2519
+ "grad_norm": 0.5899478197097778,
2520
+ "learning_rate": 1.3313241102239054e-06,
2521
+ "loss": 0.7055,
2522
+ "step": 3590
2523
+ },
2524
+ {
2525
+ "epoch": 0.9084600340672513,
2526
+ "grad_norm": 0.625042200088501,
2527
+ "learning_rate": 1.261309624894863e-06,
2528
+ "loss": 0.7455,
2529
+ "step": 3600
2530
+ },
2531
+ {
2532
+ "epoch": 0.9109835341618825,
2533
+ "grad_norm": 0.5997599363327026,
2534
+ "learning_rate": 1.1931386034025882e-06,
2535
+ "loss": 0.73,
2536
+ "step": 3610
2537
+ },
2538
+ {
2539
+ "epoch": 0.9135070342565138,
2540
+ "grad_norm": 0.5365213751792908,
2541
+ "learning_rate": 1.1268163396706583e-06,
2542
+ "loss": 0.74,
2543
+ "step": 3620
2544
+ },
2545
+ {
2546
+ "epoch": 0.916030534351145,
2547
+ "grad_norm": 0.5916723012924194,
2548
+ "learning_rate": 1.0623479840545874e-06,
2549
+ "loss": 0.6867,
2550
+ "step": 3630
2551
+ },
2552
+ {
2553
+ "epoch": 0.9185540344457763,
2554
+ "grad_norm": 0.660201370716095,
2555
+ "learning_rate": 9.997385429418555e-07,
2556
+ "loss": 0.7505,
2557
+ "step": 3640
2558
+ },
2559
+ {
2560
+ "epoch": 0.9210775345404075,
2561
+ "grad_norm": 0.6315280795097351,
2562
+ "learning_rate": 9.389928783631207e-07,
2563
+ "loss": 0.7543,
2564
+ "step": 3650
2565
+ },
2566
+ {
2567
+ "epoch": 0.9236010346350388,
2568
+ "grad_norm": 0.5867049694061279,
2569
+ "learning_rate": 8.801157076146705e-07,
2570
+ "loss": 0.7151,
2571
+ "step": 3660
2572
+ },
2573
+ {
2574
+ "epoch": 0.92612453472967,
2575
+ "grad_norm": 0.6637170910835266,
2576
+ "learning_rate": 8.231116028920765e-07,
2577
+ "loss": 0.7189,
2578
+ "step": 3670
2579
+ },
2580
+ {
2581
+ "epoch": 0.9286480348243014,
2582
+ "grad_norm": 0.5963181853294373,
2583
+ "learning_rate": 7.679849909351472e-07,
2584
+ "loss": 0.708,
2585
+ "step": 3680
2586
+ },
2587
+ {
2588
+ "epoch": 0.9311715349189326,
2589
+ "grad_norm": 0.677011251449585,
2590
+ "learning_rate": 7.147401526841485e-07,
2591
+ "loss": 0.7049,
2592
+ "step": 3690
2593
+ },
2594
+ {
2595
+ "epoch": 0.9336950350135638,
2596
+ "grad_norm": 0.6534477472305298,
2597
+ "learning_rate": 6.633812229473791e-07,
2598
+ "loss": 0.7607,
2599
+ "step": 3700
2600
+ },
2601
+ {
2602
+ "epoch": 0.9362185351081951,
2603
+ "grad_norm": 0.6873798370361328,
2604
+ "learning_rate": 6.139121900800515e-07,
2605
+ "loss": 0.7044,
2606
+ "step": 3710
2607
+ },
2608
+ {
2609
+ "epoch": 0.9387420352028263,
2610
+ "grad_norm": 0.6045345067977905,
2611
+ "learning_rate": 5.663368956745963e-07,
2612
+ "loss": 0.7141,
2613
+ "step": 3720
2614
+ },
2615
+ {
2616
+ "epoch": 0.9412655352974576,
2617
+ "grad_norm": 0.6731101274490356,
2618
+ "learning_rate": 5.206590342623164e-07,
2619
+ "loss": 0.7156,
2620
+ "step": 3730
2621
+ },
2622
+ {
2623
+ "epoch": 0.9437890353920888,
2624
+ "grad_norm": 0.5900946855545044,
2625
+ "learning_rate": 4.768821530264977e-07,
2626
+ "loss": 0.7481,
2627
+ "step": 3740
2628
+ },
2629
+ {
2630
+ "epoch": 0.9463125354867201,
2631
+ "grad_norm": 0.6716229915618896,
2632
+ "learning_rate": 4.350096515269325e-07,
2633
+ "loss": 0.7438,
2634
+ "step": 3750
2635
+ },
2636
+ {
2637
+ "epoch": 0.9488360355813513,
2638
+ "grad_norm": 0.6293070912361145,
2639
+ "learning_rate": 3.950447814359409e-07,
2640
+ "loss": 0.7449,
2641
+ "step": 3760
2642
+ },
2643
+ {
2644
+ "epoch": 0.9513595356759826,
2645
+ "grad_norm": 0.6327414512634277,
2646
+ "learning_rate": 3.5699064628583745e-07,
2647
+ "loss": 0.7241,
2648
+ "step": 3770
2649
+ },
2650
+ {
2651
+ "epoch": 0.9538830357706138,
2652
+ "grad_norm": 0.5867704749107361,
2653
+ "learning_rate": 3.2085020122793186e-07,
2654
+ "loss": 0.7247,
2655
+ "step": 3780
2656
+ },
2657
+ {
2658
+ "epoch": 0.956406535865245,
2659
+ "grad_norm": 0.6275327801704407,
2660
+ "learning_rate": 2.8662625280304613e-07,
2661
+ "loss": 0.7166,
2662
+ "step": 3790
2663
+ },
2664
+ {
2665
+ "epoch": 0.9589300359598764,
2666
+ "grad_norm": 0.634965717792511,
2667
+ "learning_rate": 2.5432145872355816e-07,
2668
+ "loss": 0.713,
2669
+ "step": 3800
2670
+ },
2671
+ {
2672
+ "epoch": 0.9614535360545076,
2673
+ "grad_norm": 0.685463011264801,
2674
+ "learning_rate": 2.2393832766701706e-07,
2675
+ "loss": 0.7328,
2676
+ "step": 3810
2677
+ },
2678
+ {
2679
+ "epoch": 0.9639770361491389,
2680
+ "grad_norm": 0.5693522095680237,
2681
+ "learning_rate": 1.9547921908133483e-07,
2682
+ "loss": 0.7333,
2683
+ "step": 3820
2684
+ },
2685
+ {
2686
+ "epoch": 0.9665005362437701,
2687
+ "grad_norm": 0.6611155271530151,
2688
+ "learning_rate": 1.689463430015442e-07,
2689
+ "loss": 0.7102,
2690
+ "step": 3830
2691
+ },
2692
+ {
2693
+ "epoch": 0.9690240363384014,
2694
+ "grad_norm": 0.6425820589065552,
2695
+ "learning_rate": 1.443417598781971e-07,
2696
+ "loss": 0.7294,
2697
+ "step": 3840
2698
+ },
2699
+ {
2700
+ "epoch": 0.9715475364330326,
2701
+ "grad_norm": 0.66698157787323,
2702
+ "learning_rate": 1.2166738041733684e-07,
2703
+ "loss": 0.728,
2704
+ "step": 3850
2705
+ },
2706
+ {
2707
+ "epoch": 0.9740710365276639,
2708
+ "grad_norm": 0.6152459383010864,
2709
+ "learning_rate": 1.0092496543212814e-07,
2710
+ "loss": 0.7201,
2711
+ "step": 3860
2712
+ },
2713
+ {
2714
+ "epoch": 0.9765945366222951,
2715
+ "grad_norm": 0.613070547580719,
2716
+ "learning_rate": 8.211612570611926e-08,
2717
+ "loss": 0.7148,
2718
+ "step": 3870
2719
+ },
2720
+ {
2721
+ "epoch": 0.9791180367169264,
2722
+ "grad_norm": 0.6403253674507141,
2723
+ "learning_rate": 6.524232186815305e-08,
2724
+ "loss": 0.7129,
2725
+ "step": 3880
2726
+ },
2727
+ {
2728
+ "epoch": 0.9816415368115576,
2729
+ "grad_norm": 0.6211004257202148,
2730
+ "learning_rate": 5.03048642789411e-08,
2731
+ "loss": 0.7068,
2732
+ "step": 3890
2733
+ },
2734
+ {
2735
+ "epoch": 0.9841650369061888,
2736
+ "grad_norm": 0.7897922992706299,
2737
+ "learning_rate": 3.730491292930072e-08,
2738
+ "loss": 0.7184,
2739
+ "step": 3900
2740
+ },
2741
+ {
2742
+ "epoch": 0.9866885370008202,
2743
+ "grad_norm": 0.756610631942749,
2744
+ "learning_rate": 2.624347735007693e-08,
2745
+ "loss": 0.738,
2746
+ "step": 3910
2747
+ },
2748
+ {
2749
+ "epoch": 0.9892120370954514,
2750
+ "grad_norm": 0.6681756973266602,
2751
+ "learning_rate": 1.7121416533749658e-08,
2752
+ "loss": 0.7298,
2753
+ "step": 3920
2754
+ },
2755
+ {
2756
+ "epoch": 0.9917355371900827,
2757
+ "grad_norm": 0.630942702293396,
2758
+ "learning_rate": 9.939438867723194e-09,
2759
+ "loss": 0.7322,
2760
+ "step": 3930
2761
+ },
2762
+ {
2763
+ "epoch": 0.9942590372847139,
2764
+ "grad_norm": 0.6125476360321045,
2765
+ "learning_rate": 4.6981020793118725e-09,
2766
+ "loss": 0.7414,
2767
+ "step": 3940
2768
+ },
2769
+ {
2770
+ "epoch": 0.9967825373793452,
2771
+ "grad_norm": 0.6152609586715698,
2772
+ "learning_rate": 1.3978131924385906e-09,
2773
+ "loss": 0.7124,
2774
+ "step": 3950
2775
+ },
2776
+ {
2777
+ "epoch": 0.9993060374739764,
2778
+ "grad_norm": 0.6308910846710205,
2779
+ "learning_rate": 3.88284960184393e-11,
2780
+ "loss": 0.7419,
2781
+ "step": 3960
2782
+ }
2783
+ ],
2784
+ "logging_steps": 10,
2785
+ "max_steps": 3962,
2786
+ "num_input_tokens_seen": 0,
2787
+ "num_train_epochs": 1,
2788
+ "save_steps": 1000,
2789
+ "stateful_callbacks": {
2790
+ "TrainerControl": {
2791
+ "args": {
2792
+ "should_epoch_stop": false,
2793
+ "should_evaluate": false,
2794
+ "should_log": false,
2795
+ "should_save": true,
2796
+ "should_training_stop": true
2797
+ },
2798
+ "attributes": {}
2799
+ }
2800
+ },
2801
+ "total_flos": 4.315842275872604e+18,
2802
+ "train_batch_size": 2,
2803
+ "trial_name": null,
2804
+ "trial_params": null
2805
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:521f433a3f3ed9e53b6435fbdd695b6a70697bf5603a54f87df385d0426108e2
3
+ size 7160
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)