upload
Browse files- .gitattributes +1 -0
- added_tokens.json +24 -0
- config.json +30 -0
- generation_config.json +6 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +442 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- trainer_state.json +2805 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "moussaKam/fr-qwen-3B-base",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 2048,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 36,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 36,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_mrope": false,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 151936
|
30 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.46.1"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step3962
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9bbcb05eaaeeba15b23df2a066c482e8f653ed65e2219b1331160012a64ba8c
|
3 |
+
size 4957560304
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f7b0c7dbcc57dbf41f14791ca57edcfad3dfbc935d3a12f1ec74150cb76c693
|
3 |
+
size 1836696752
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6794207232
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
441 |
+
}
|
442 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"padding_side": "right",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2805 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9998107374929026,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 3962,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0025235000946312535,
|
13 |
+
"grad_norm": 4.200274467468262,
|
14 |
+
"learning_rate": 1.2594458438287156e-06,
|
15 |
+
"loss": 0.9928,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.005047000189262507,
|
20 |
+
"grad_norm": 5.791783332824707,
|
21 |
+
"learning_rate": 2.518891687657431e-06,
|
22 |
+
"loss": 0.9146,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.007570500283893761,
|
27 |
+
"grad_norm": 1.0928738117218018,
|
28 |
+
"learning_rate": 3.7783375314861467e-06,
|
29 |
+
"loss": 0.8451,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.010094000378525014,
|
34 |
+
"grad_norm": 0.792613685131073,
|
35 |
+
"learning_rate": 5.037783375314862e-06,
|
36 |
+
"loss": 0.8395,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.012617500473156268,
|
41 |
+
"grad_norm": 0.8177407383918762,
|
42 |
+
"learning_rate": 6.297229219143577e-06,
|
43 |
+
"loss": 0.7893,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.015141000567787522,
|
48 |
+
"grad_norm": 0.7625726461410522,
|
49 |
+
"learning_rate": 7.556675062972293e-06,
|
50 |
+
"loss": 0.8163,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.017664500662418776,
|
55 |
+
"grad_norm": 0.8031908869743347,
|
56 |
+
"learning_rate": 8.816120906801008e-06,
|
57 |
+
"loss": 0.8137,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.020188000757050028,
|
62 |
+
"grad_norm": 0.8055213093757629,
|
63 |
+
"learning_rate": 1.0075566750629725e-05,
|
64 |
+
"loss": 0.8012,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.022711500851681284,
|
69 |
+
"grad_norm": 0.8089568614959717,
|
70 |
+
"learning_rate": 1.133501259445844e-05,
|
71 |
+
"loss": 0.7879,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.025235000946312536,
|
76 |
+
"grad_norm": 0.798632025718689,
|
77 |
+
"learning_rate": 1.2594458438287154e-05,
|
78 |
+
"loss": 0.7832,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.027758501040943788,
|
83 |
+
"grad_norm": 0.8331993818283081,
|
84 |
+
"learning_rate": 1.385390428211587e-05,
|
85 |
+
"loss": 0.8476,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.030282001135575044,
|
90 |
+
"grad_norm": 0.6234100461006165,
|
91 |
+
"learning_rate": 1.5113350125944587e-05,
|
92 |
+
"loss": 0.8122,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.0328055012302063,
|
97 |
+
"grad_norm": 0.841749906539917,
|
98 |
+
"learning_rate": 1.63727959697733e-05,
|
99 |
+
"loss": 0.7766,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.03532900132483755,
|
104 |
+
"grad_norm": 0.8041658997535706,
|
105 |
+
"learning_rate": 1.7632241813602016e-05,
|
106 |
+
"loss": 0.7657,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.037852501419468804,
|
111 |
+
"grad_norm": 0.8009690046310425,
|
112 |
+
"learning_rate": 1.8891687657430733e-05,
|
113 |
+
"loss": 0.8194,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.040376001514100056,
|
118 |
+
"grad_norm": 0.776654064655304,
|
119 |
+
"learning_rate": 2.015113350125945e-05,
|
120 |
+
"loss": 0.8009,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.04289950160873131,
|
125 |
+
"grad_norm": 0.7446156740188599,
|
126 |
+
"learning_rate": 2.1410579345088162e-05,
|
127 |
+
"loss": 0.7832,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.04542300170336257,
|
132 |
+
"grad_norm": 0.7450286149978638,
|
133 |
+
"learning_rate": 2.267002518891688e-05,
|
134 |
+
"loss": 0.8252,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.04794650179799382,
|
139 |
+
"grad_norm": 0.788154125213623,
|
140 |
+
"learning_rate": 2.392947103274559e-05,
|
141 |
+
"loss": 0.8131,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.05047000189262507,
|
146 |
+
"grad_norm": 0.8005194067955017,
|
147 |
+
"learning_rate": 2.5188916876574308e-05,
|
148 |
+
"loss": 0.816,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.052993501987256324,
|
153 |
+
"grad_norm": 0.849112868309021,
|
154 |
+
"learning_rate": 2.6448362720403024e-05,
|
155 |
+
"loss": 0.8028,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.055517002081887576,
|
160 |
+
"grad_norm": 0.7202879786491394,
|
161 |
+
"learning_rate": 2.770780856423174e-05,
|
162 |
+
"loss": 0.8145,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.058040502176518835,
|
167 |
+
"grad_norm": 0.8000121116638184,
|
168 |
+
"learning_rate": 2.8967254408060457e-05,
|
169 |
+
"loss": 0.7571,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.06056400227115009,
|
174 |
+
"grad_norm": 0.7495560050010681,
|
175 |
+
"learning_rate": 3.0226700251889174e-05,
|
176 |
+
"loss": 0.768,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.06308750236578134,
|
181 |
+
"grad_norm": 0.8274487853050232,
|
182 |
+
"learning_rate": 3.148614609571788e-05,
|
183 |
+
"loss": 0.8411,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.0656110024604126,
|
188 |
+
"grad_norm": 0.9089523553848267,
|
189 |
+
"learning_rate": 3.27455919395466e-05,
|
190 |
+
"loss": 0.8114,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.06813450255504384,
|
195 |
+
"grad_norm": 0.8551489114761353,
|
196 |
+
"learning_rate": 3.4005037783375316e-05,
|
197 |
+
"loss": 0.8122,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.0706580026496751,
|
202 |
+
"grad_norm": 0.8696727156639099,
|
203 |
+
"learning_rate": 3.526448362720403e-05,
|
204 |
+
"loss": 0.7858,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.07318150274430635,
|
209 |
+
"grad_norm": 0.8770012259483337,
|
210 |
+
"learning_rate": 3.652392947103275e-05,
|
211 |
+
"loss": 0.7971,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.07570500283893761,
|
216 |
+
"grad_norm": 0.8717426657676697,
|
217 |
+
"learning_rate": 3.7783375314861465e-05,
|
218 |
+
"loss": 0.7703,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.07822850293356887,
|
223 |
+
"grad_norm": 0.8454267382621765,
|
224 |
+
"learning_rate": 3.904282115869018e-05,
|
225 |
+
"loss": 0.8146,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.08075200302820011,
|
230 |
+
"grad_norm": 0.7605656981468201,
|
231 |
+
"learning_rate": 4.03022670025189e-05,
|
232 |
+
"loss": 0.7875,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.08327550312283137,
|
237 |
+
"grad_norm": 0.7611861228942871,
|
238 |
+
"learning_rate": 4.1561712846347615e-05,
|
239 |
+
"loss": 0.8089,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.08579900321746262,
|
244 |
+
"grad_norm": 0.7927576303482056,
|
245 |
+
"learning_rate": 4.2821158690176324e-05,
|
246 |
+
"loss": 0.7802,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.08832250331209388,
|
251 |
+
"grad_norm": 0.8251197338104248,
|
252 |
+
"learning_rate": 4.408060453400504e-05,
|
253 |
+
"loss": 0.7648,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.09084600340672513,
|
258 |
+
"grad_norm": 0.7899374961853027,
|
259 |
+
"learning_rate": 4.534005037783376e-05,
|
260 |
+
"loss": 0.8011,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.09336950350135638,
|
265 |
+
"grad_norm": 0.8102702498435974,
|
266 |
+
"learning_rate": 4.659949622166247e-05,
|
267 |
+
"loss": 0.8063,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.09589300359598764,
|
272 |
+
"grad_norm": 0.8451895713806152,
|
273 |
+
"learning_rate": 4.785894206549118e-05,
|
274 |
+
"loss": 0.8162,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.09841650369061888,
|
279 |
+
"grad_norm": 0.664681077003479,
|
280 |
+
"learning_rate": 4.91183879093199e-05,
|
281 |
+
"loss": 0.8095,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.10094000378525014,
|
286 |
+
"grad_norm": 1.5052850246429443,
|
287 |
+
"learning_rate": 4.999991263591223e-05,
|
288 |
+
"loss": 0.7586,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.1034635038798814,
|
293 |
+
"grad_norm": 0.7986663579940796,
|
294 |
+
"learning_rate": 4.9998359513560176e-05,
|
295 |
+
"loss": 0.783,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.10598700397451265,
|
300 |
+
"grad_norm": 0.7573216557502747,
|
301 |
+
"learning_rate": 4.999486510586282e-05,
|
302 |
+
"loss": 0.8245,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.1085105040691439,
|
307 |
+
"grad_norm": 0.7997973561286926,
|
308 |
+
"learning_rate": 4.9989429684183686e-05,
|
309 |
+
"loss": 0.8228,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.11103400416377515,
|
314 |
+
"grad_norm": 0.7936347723007202,
|
315 |
+
"learning_rate": 4.9982053670618626e-05,
|
316 |
+
"loss": 0.8098,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.11355750425840641,
|
321 |
+
"grad_norm": 0.7175100445747375,
|
322 |
+
"learning_rate": 4.997273763796312e-05,
|
323 |
+
"loss": 0.7959,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.11608100435303767,
|
328 |
+
"grad_norm": 0.8202365040779114,
|
329 |
+
"learning_rate": 4.996148230966775e-05,
|
330 |
+
"loss": 0.7682,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.11860450444766892,
|
335 |
+
"grad_norm": 0.7965167164802551,
|
336 |
+
"learning_rate": 4.994828855978202e-05,
|
337 |
+
"loss": 0.8459,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.12112800454230017,
|
342 |
+
"grad_norm": 0.7704299092292786,
|
343 |
+
"learning_rate": 4.99331574128865e-05,
|
344 |
+
"loss": 0.7659,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.12365150463693142,
|
349 |
+
"grad_norm": 0.7578620910644531,
|
350 |
+
"learning_rate": 4.991609004401324e-05,
|
351 |
+
"loss": 0.8097,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.12617500473156268,
|
356 |
+
"grad_norm": 0.7264330983161926,
|
357 |
+
"learning_rate": 4.989708777855453e-05,
|
358 |
+
"loss": 0.8092,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.12869850482619394,
|
363 |
+
"grad_norm": 0.8330686092376709,
|
364 |
+
"learning_rate": 4.9876152092159994e-05,
|
365 |
+
"loss": 0.8352,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.1312220049208252,
|
370 |
+
"grad_norm": 0.6997131705284119,
|
371 |
+
"learning_rate": 4.985328461062195e-05,
|
372 |
+
"loss": 0.8109,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.13374550501545643,
|
377 |
+
"grad_norm": 0.6822782754898071,
|
378 |
+
"learning_rate": 4.98284871097492e-05,
|
379 |
+
"loss": 0.8048,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.1362690051100877,
|
384 |
+
"grad_norm": 0.741365373134613,
|
385 |
+
"learning_rate": 4.98017615152291e-05,
|
386 |
+
"loss": 0.8053,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.13879250520471895,
|
391 |
+
"grad_norm": 0.7147175669670105,
|
392 |
+
"learning_rate": 4.977310990247807e-05,
|
393 |
+
"loss": 0.8005,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.1413160052993502,
|
398 |
+
"grad_norm": 0.8730887770652771,
|
399 |
+
"learning_rate": 4.974253449648031e-05,
|
400 |
+
"loss": 0.8088,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.14383950539398146,
|
405 |
+
"grad_norm": 0.7284607887268066,
|
406 |
+
"learning_rate": 4.971003767161516e-05,
|
407 |
+
"loss": 0.8023,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.1463630054886127,
|
412 |
+
"grad_norm": 0.737747311592102,
|
413 |
+
"learning_rate": 4.9675621951472584e-05,
|
414 |
+
"loss": 0.808,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.14888650558324396,
|
419 |
+
"grad_norm": 0.6779095530509949,
|
420 |
+
"learning_rate": 4.9639290008657304e-05,
|
421 |
+
"loss": 0.8142,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.15141000567787521,
|
426 |
+
"grad_norm": 0.7556443214416504,
|
427 |
+
"learning_rate": 4.960104466458118e-05,
|
428 |
+
"loss": 0.8131,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.15393350577250647,
|
433 |
+
"grad_norm": 0.7624189257621765,
|
434 |
+
"learning_rate": 4.956088888924414e-05,
|
435 |
+
"loss": 0.7894,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.15645700586713773,
|
440 |
+
"grad_norm": 0.7633741497993469,
|
441 |
+
"learning_rate": 4.951882580100353e-05,
|
442 |
+
"loss": 0.8126,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.15898050596176896,
|
447 |
+
"grad_norm": 0.6966682076454163,
|
448 |
+
"learning_rate": 4.947485866633199e-05,
|
449 |
+
"loss": 0.8111,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.16150400605640022,
|
454 |
+
"grad_norm": 0.7578861117362976,
|
455 |
+
"learning_rate": 4.94289908995637e-05,
|
456 |
+
"loss": 0.7498,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.16402750615103148,
|
461 |
+
"grad_norm": 0.7788159847259521,
|
462 |
+
"learning_rate": 4.938122606262936e-05,
|
463 |
+
"loss": 0.8281,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.16655100624566274,
|
468 |
+
"grad_norm": 0.7012534737586975,
|
469 |
+
"learning_rate": 4.9331567864779457e-05,
|
470 |
+
"loss": 0.8298,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.169074506340294,
|
475 |
+
"grad_norm": 0.6714362502098083,
|
476 |
+
"learning_rate": 4.928002016229634e-05,
|
477 |
+
"loss": 0.8126,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.17159800643492523,
|
482 |
+
"grad_norm": 0.6076031923294067,
|
483 |
+
"learning_rate": 4.9226586958194647e-05,
|
484 |
+
"loss": 0.8289,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.1741215065295565,
|
489 |
+
"grad_norm": 0.6331019997596741,
|
490 |
+
"learning_rate": 4.9171272401910504e-05,
|
491 |
+
"loss": 0.7602,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.17664500662418775,
|
496 |
+
"grad_norm": 2.956536293029785,
|
497 |
+
"learning_rate": 4.9114080788979284e-05,
|
498 |
+
"loss": 0.8143,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.179168506718819,
|
503 |
+
"grad_norm": 0.7164005041122437,
|
504 |
+
"learning_rate": 4.905501656070202e-05,
|
505 |
+
"loss": 0.8158,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.18169200681345027,
|
510 |
+
"grad_norm": 0.6963945031166077,
|
511 |
+
"learning_rate": 4.8994084303800525e-05,
|
512 |
+
"loss": 0.8004,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.1842155069080815,
|
517 |
+
"grad_norm": 0.7561419010162354,
|
518 |
+
"learning_rate": 4.89312887500612e-05,
|
519 |
+
"loss": 0.8064,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.18673900700271276,
|
524 |
+
"grad_norm": 0.672164261341095,
|
525 |
+
"learning_rate": 4.8866634775967544e-05,
|
526 |
+
"loss": 0.8111,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.18926250709734402,
|
531 |
+
"grad_norm": 0.6340550184249878,
|
532 |
+
"learning_rate": 4.880012740232154e-05,
|
533 |
+
"loss": 0.8009,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.19178600719197528,
|
538 |
+
"grad_norm": 0.7655452489852905,
|
539 |
+
"learning_rate": 4.873177179385368e-05,
|
540 |
+
"loss": 0.7912,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.19430950728660654,
|
545 |
+
"grad_norm": 0.7131490111351013,
|
546 |
+
"learning_rate": 4.866157325882192e-05,
|
547 |
+
"loss": 0.8019,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.19683300738123777,
|
552 |
+
"grad_norm": 0.7386584877967834,
|
553 |
+
"learning_rate": 4.858953724859948e-05,
|
554 |
+
"loss": 0.7934,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.19935650747586903,
|
559 |
+
"grad_norm": 0.6958081126213074,
|
560 |
+
"learning_rate": 4.851566935725147e-05,
|
561 |
+
"loss": 0.7727,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.20188000757050029,
|
566 |
+
"grad_norm": 0.660095751285553,
|
567 |
+
"learning_rate": 4.843997532110051e-05,
|
568 |
+
"loss": 0.8002,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.20440350766513155,
|
573 |
+
"grad_norm": 0.8626520037651062,
|
574 |
+
"learning_rate": 4.836246101828124e-05,
|
575 |
+
"loss": 0.8117,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.2069270077597628,
|
580 |
+
"grad_norm": 0.608925998210907,
|
581 |
+
"learning_rate": 4.828313246828386e-05,
|
582 |
+
"loss": 0.8119,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.20945050785439404,
|
587 |
+
"grad_norm": 0.6617856621742249,
|
588 |
+
"learning_rate": 4.820199583148667e-05,
|
589 |
+
"loss": 0.8057,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.2119740079490253,
|
594 |
+
"grad_norm": 0.6674720644950867,
|
595 |
+
"learning_rate": 4.811905740867769e-05,
|
596 |
+
"loss": 0.815,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.21449750804365655,
|
601 |
+
"grad_norm": 0.7636524438858032,
|
602 |
+
"learning_rate": 4.803432364056535e-05,
|
603 |
+
"loss": 0.8113,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.2170210081382878,
|
608 |
+
"grad_norm": 0.6965427398681641,
|
609 |
+
"learning_rate": 4.794780110727832e-05,
|
610 |
+
"loss": 0.783,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.21954450823291907,
|
615 |
+
"grad_norm": 0.7165718078613281,
|
616 |
+
"learning_rate": 4.785949652785453e-05,
|
617 |
+
"loss": 0.8162,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.2220680083275503,
|
622 |
+
"grad_norm": 0.8301019072532654,
|
623 |
+
"learning_rate": 4.776941675971941e-05,
|
624 |
+
"loss": 0.7954,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.22459150842218156,
|
629 |
+
"grad_norm": 0.6930355429649353,
|
630 |
+
"learning_rate": 4.767756879815334e-05,
|
631 |
+
"loss": 0.7955,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.22711500851681282,
|
636 |
+
"grad_norm": 0.7135087847709656,
|
637 |
+
"learning_rate": 4.758395977574841e-05,
|
638 |
+
"loss": 0.8324,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.22963850861144408,
|
643 |
+
"grad_norm": 0.6820036172866821,
|
644 |
+
"learning_rate": 4.748859696185458e-05,
|
645 |
+
"loss": 0.8207,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.23216200870607534,
|
650 |
+
"grad_norm": 0.6496434807777405,
|
651 |
+
"learning_rate": 4.739148776201512e-05,
|
652 |
+
"loss": 0.7498,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.23468550880070657,
|
657 |
+
"grad_norm": 0.692870020866394,
|
658 |
+
"learning_rate": 4.729263971739154e-05,
|
659 |
+
"loss": 0.8109,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.23720900889533783,
|
664 |
+
"grad_norm": 0.6766488552093506,
|
665 |
+
"learning_rate": 4.719206050417796e-05,
|
666 |
+
"loss": 0.7938,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.2397325089899691,
|
671 |
+
"grad_norm": 0.6905511617660522,
|
672 |
+
"learning_rate": 4.7089757933005016e-05,
|
673 |
+
"loss": 0.8036,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.24225600908460035,
|
678 |
+
"grad_norm": 1.9566072225570679,
|
679 |
+
"learning_rate": 4.698573994833332e-05,
|
680 |
+
"loss": 0.7954,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.2447795091792316,
|
685 |
+
"grad_norm": 0.7477098107337952,
|
686 |
+
"learning_rate": 4.688001462783648e-05,
|
687 |
+
"loss": 0.7862,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.24730300927386284,
|
692 |
+
"grad_norm": 0.719272792339325,
|
693 |
+
"learning_rate": 4.6772590181773866e-05,
|
694 |
+
"loss": 0.7626,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.2498265093684941,
|
699 |
+
"grad_norm": 0.6895411014556885,
|
700 |
+
"learning_rate": 4.6663474952353004e-05,
|
701 |
+
"loss": 0.7704,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.25235000946312536,
|
706 |
+
"grad_norm": 3.369716167449951,
|
707 |
+
"learning_rate": 4.6552677413081756e-05,
|
708 |
+
"loss": 0.8274,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.2548735095577566,
|
713 |
+
"grad_norm": 1.2634356021881104,
|
714 |
+
"learning_rate": 4.644020616811029e-05,
|
715 |
+
"loss": 0.813,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.2573970096523879,
|
720 |
+
"grad_norm": 0.8203848600387573,
|
721 |
+
"learning_rate": 4.6326069951562924e-05,
|
722 |
+
"loss": 0.8331,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.25992050974701914,
|
727 |
+
"grad_norm": 0.6396493911743164,
|
728 |
+
"learning_rate": 4.6210277626859856e-05,
|
729 |
+
"loss": 0.7532,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.2624440098416504,
|
734 |
+
"grad_norm": 0.6259830594062805,
|
735 |
+
"learning_rate": 4.609283818602884e-05,
|
736 |
+
"loss": 0.8041,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.2649675099362816,
|
741 |
+
"grad_norm": 0.6914517283439636,
|
742 |
+
"learning_rate": 4.5973760749006963e-05,
|
743 |
+
"loss": 0.8101,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.26749101003091286,
|
748 |
+
"grad_norm": 0.652829110622406,
|
749 |
+
"learning_rate": 4.585305456293235e-05,
|
750 |
+
"loss": 0.8394,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.2700145101255441,
|
755 |
+
"grad_norm": 0.9240155220031738,
|
756 |
+
"learning_rate": 4.5730729001426083e-05,
|
757 |
+
"loss": 0.8135,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.2725380102201754,
|
762 |
+
"grad_norm": 0.6168021559715271,
|
763 |
+
"learning_rate": 4.5606793563864316e-05,
|
764 |
+
"loss": 0.7875,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.27506151031480663,
|
769 |
+
"grad_norm": 0.6858901381492615,
|
770 |
+
"learning_rate": 4.548125787464054e-05,
|
771 |
+
"loss": 0.7863,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.2775850104094379,
|
776 |
+
"grad_norm": 0.6377461552619934,
|
777 |
+
"learning_rate": 4.535413168241821e-05,
|
778 |
+
"loss": 0.7945,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.28010851050406915,
|
783 |
+
"grad_norm": 0.644579291343689,
|
784 |
+
"learning_rate": 4.522542485937369e-05,
|
785 |
+
"loss": 0.8294,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.2826320105987004,
|
790 |
+
"grad_norm": 0.6372377872467041,
|
791 |
+
"learning_rate": 4.509514740042962e-05,
|
792 |
+
"loss": 0.7961,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.28515551069333167,
|
797 |
+
"grad_norm": 0.7171216011047363,
|
798 |
+
"learning_rate": 4.496330942247873e-05,
|
799 |
+
"loss": 0.7968,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.28767901078796293,
|
804 |
+
"grad_norm": 0.6972722411155701,
|
805 |
+
"learning_rate": 4.482992116359824e-05,
|
806 |
+
"loss": 0.7841,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.29020251088259413,
|
811 |
+
"grad_norm": 0.6313626170158386,
|
812 |
+
"learning_rate": 4.469499298225473e-05,
|
813 |
+
"loss": 0.7567,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.2927260109772254,
|
818 |
+
"grad_norm": 0.6984760761260986,
|
819 |
+
"learning_rate": 4.455853535649984e-05,
|
820 |
+
"loss": 0.7877,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.29524951107185665,
|
825 |
+
"grad_norm": 0.6628227829933167,
|
826 |
+
"learning_rate": 4.442055888315646e-05,
|
827 |
+
"loss": 0.7953,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.2977730111664879,
|
832 |
+
"grad_norm": 0.6865362524986267,
|
833 |
+
"learning_rate": 4.4281074276995936e-05,
|
834 |
+
"loss": 0.7553,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.30029651126111917,
|
839 |
+
"grad_norm": 0.7026821970939636,
|
840 |
+
"learning_rate": 4.4140092369905914e-05,
|
841 |
+
"loss": 0.7683,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.30282001135575043,
|
846 |
+
"grad_norm": 0.8070855736732483,
|
847 |
+
"learning_rate": 4.399762411004922e-05,
|
848 |
+
"loss": 0.8004,
|
849 |
+
"step": 1200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.3053435114503817,
|
853 |
+
"grad_norm": 0.7692244648933411,
|
854 |
+
"learning_rate": 4.3853680561013647e-05,
|
855 |
+
"loss": 0.8224,
|
856 |
+
"step": 1210
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.30786701154501295,
|
860 |
+
"grad_norm": 0.6959588527679443,
|
861 |
+
"learning_rate": 4.370827290095277e-05,
|
862 |
+
"loss": 0.792,
|
863 |
+
"step": 1220
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.3103905116396442,
|
867 |
+
"grad_norm": 0.6718862652778625,
|
868 |
+
"learning_rate": 4.356141242171795e-05,
|
869 |
+
"loss": 0.7937,
|
870 |
+
"step": 1230
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.31291401173427547,
|
874 |
+
"grad_norm": 0.6850164532661438,
|
875 |
+
"learning_rate": 4.3413110527981406e-05,
|
876 |
+
"loss": 0.7705,
|
877 |
+
"step": 1240
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.31543751182890667,
|
881 |
+
"grad_norm": 0.7577234506607056,
|
882 |
+
"learning_rate": 4.3263378736350566e-05,
|
883 |
+
"loss": 0.7971,
|
884 |
+
"step": 1250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.31796101192353793,
|
888 |
+
"grad_norm": 0.7119166851043701,
|
889 |
+
"learning_rate": 4.311222867447375e-05,
|
890 |
+
"loss": 0.8302,
|
891 |
+
"step": 1260
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.3204845120181692,
|
895 |
+
"grad_norm": 0.7407262921333313,
|
896 |
+
"learning_rate": 4.295967208013717e-05,
|
897 |
+
"loss": 0.7944,
|
898 |
+
"step": 1270
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.32300801211280045,
|
902 |
+
"grad_norm": 0.6641649007797241,
|
903 |
+
"learning_rate": 4.280572080035348e-05,
|
904 |
+
"loss": 0.7934,
|
905 |
+
"step": 1280
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.3255315122074317,
|
909 |
+
"grad_norm": 0.6886960864067078,
|
910 |
+
"learning_rate": 4.2650386790441696e-05,
|
911 |
+
"loss": 0.7839,
|
912 |
+
"step": 1290
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.32805501230206296,
|
916 |
+
"grad_norm": 0.6761602163314819,
|
917 |
+
"learning_rate": 4.2493682113098855e-05,
|
918 |
+
"loss": 0.7943,
|
919 |
+
"step": 1300
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.3305785123966942,
|
923 |
+
"grad_norm": 0.6564992666244507,
|
924 |
+
"learning_rate": 4.233561893746323e-05,
|
925 |
+
"loss": 0.8184,
|
926 |
+
"step": 1310
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.3331020124913255,
|
930 |
+
"grad_norm": 0.6928525567054749,
|
931 |
+
"learning_rate": 4.217620953816935e-05,
|
932 |
+
"loss": 0.7758,
|
933 |
+
"step": 1320
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.33562551258595674,
|
937 |
+
"grad_norm": 0.6335028409957886,
|
938 |
+
"learning_rate": 4.2015466294394756e-05,
|
939 |
+
"loss": 0.8091,
|
940 |
+
"step": 1330
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.338149012680588,
|
944 |
+
"grad_norm": 1.0897998809814453,
|
945 |
+
"learning_rate": 4.185340168889868e-05,
|
946 |
+
"loss": 0.7807,
|
947 |
+
"step": 1340
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.3406725127752192,
|
951 |
+
"grad_norm": 0.6639924645423889,
|
952 |
+
"learning_rate": 4.169002830705274e-05,
|
953 |
+
"loss": 0.7803,
|
954 |
+
"step": 1350
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.34319601286985046,
|
958 |
+
"grad_norm": 0.6235373020172119,
|
959 |
+
"learning_rate": 4.152535883586352e-05,
|
960 |
+
"loss": 0.7651,
|
961 |
+
"step": 1360
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.3457195129644817,
|
965 |
+
"grad_norm": 0.6909653544425964,
|
966 |
+
"learning_rate": 4.135940606298738e-05,
|
967 |
+
"loss": 0.7748,
|
968 |
+
"step": 1370
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.348243013059113,
|
972 |
+
"grad_norm": 0.6260821223258972,
|
973 |
+
"learning_rate": 4.119218287573743e-05,
|
974 |
+
"loss": 0.7624,
|
975 |
+
"step": 1380
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.35076651315374424,
|
979 |
+
"grad_norm": 0.6416032910346985,
|
980 |
+
"learning_rate": 4.102370226008271e-05,
|
981 |
+
"loss": 0.813,
|
982 |
+
"step": 1390
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.3532900132483755,
|
986 |
+
"grad_norm": 0.6173393726348877,
|
987 |
+
"learning_rate": 4.085397729963976e-05,
|
988 |
+
"loss": 0.7767,
|
989 |
+
"step": 1400
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.35581351334300676,
|
993 |
+
"grad_norm": 0.7046598792076111,
|
994 |
+
"learning_rate": 4.06830211746566e-05,
|
995 |
+
"loss": 0.8095,
|
996 |
+
"step": 1410
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.358337013437638,
|
1000 |
+
"grad_norm": 0.7577833533287048,
|
1001 |
+
"learning_rate": 4.051084716098921e-05,
|
1002 |
+
"loss": 0.7859,
|
1003 |
+
"step": 1420
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.3608605135322693,
|
1007 |
+
"grad_norm": 0.6137785911560059,
|
1008 |
+
"learning_rate": 4.0337468629070496e-05,
|
1009 |
+
"loss": 0.7879,
|
1010 |
+
"step": 1430
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.36338401362690054,
|
1014 |
+
"grad_norm": 0.6560728549957275,
|
1015 |
+
"learning_rate": 4.016289904287212e-05,
|
1016 |
+
"loss": 0.7811,
|
1017 |
+
"step": 1440
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.36590751372153174,
|
1021 |
+
"grad_norm": 0.6869454383850098,
|
1022 |
+
"learning_rate": 3.9987151958858794e-05,
|
1023 |
+
"loss": 0.7954,
|
1024 |
+
"step": 1450
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.368431013816163,
|
1028 |
+
"grad_norm": 0.6819769144058228,
|
1029 |
+
"learning_rate": 3.981024102493566e-05,
|
1030 |
+
"loss": 0.7607,
|
1031 |
+
"step": 1460
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.37095451391079426,
|
1035 |
+
"grad_norm": 0.694311797618866,
|
1036 |
+
"learning_rate": 3.963217997938834e-05,
|
1037 |
+
"loss": 0.7926,
|
1038 |
+
"step": 1470
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.3734780140054255,
|
1042 |
+
"grad_norm": 0.7280906438827515,
|
1043 |
+
"learning_rate": 3.945298264981614e-05,
|
1044 |
+
"loss": 0.7749,
|
1045 |
+
"step": 1480
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.3760015141000568,
|
1049 |
+
"grad_norm": 0.6853066682815552,
|
1050 |
+
"learning_rate": 3.927266295205818e-05,
|
1051 |
+
"loss": 0.7927,
|
1052 |
+
"step": 1490
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.37852501419468804,
|
1056 |
+
"grad_norm": 0.6501105427742004,
|
1057 |
+
"learning_rate": 3.9091234889112815e-05,
|
1058 |
+
"loss": 0.7895,
|
1059 |
+
"step": 1500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.3810485142893193,
|
1063 |
+
"grad_norm": 0.649364173412323,
|
1064 |
+
"learning_rate": 3.8908712550050154e-05,
|
1065 |
+
"loss": 0.7952,
|
1066 |
+
"step": 1510
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.38357201438395055,
|
1070 |
+
"grad_norm": 0.6459169387817383,
|
1071 |
+
"learning_rate": 3.8725110108917975e-05,
|
1072 |
+
"loss": 0.7585,
|
1073 |
+
"step": 1520
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.3860955144785818,
|
1077 |
+
"grad_norm": 0.6606280207633972,
|
1078 |
+
"learning_rate": 3.854044182364098e-05,
|
1079 |
+
"loss": 0.7851,
|
1080 |
+
"step": 1530
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.3886190145732131,
|
1084 |
+
"grad_norm": 0.6776377558708191,
|
1085 |
+
"learning_rate": 3.835472203491367e-05,
|
1086 |
+
"loss": 0.7768,
|
1087 |
+
"step": 1540
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.3911425146678443,
|
1091 |
+
"grad_norm": 0.6148844361305237,
|
1092 |
+
"learning_rate": 3.816796516508658e-05,
|
1093 |
+
"loss": 0.777,
|
1094 |
+
"step": 1550
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.39366601476247554,
|
1098 |
+
"grad_norm": 0.5975064039230347,
|
1099 |
+
"learning_rate": 3.798018571704638e-05,
|
1100 |
+
"loss": 0.7677,
|
1101 |
+
"step": 1560
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.3961895148571068,
|
1105 |
+
"grad_norm": 0.646436333656311,
|
1106 |
+
"learning_rate": 3.779139827308956e-05,
|
1107 |
+
"loss": 0.8021,
|
1108 |
+
"step": 1570
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.39871301495173805,
|
1112 |
+
"grad_norm": 0.7195472121238708,
|
1113 |
+
"learning_rate": 3.760161749379008e-05,
|
1114 |
+
"loss": 0.7915,
|
1115 |
+
"step": 1580
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.4012365150463693,
|
1119 |
+
"grad_norm": 0.647221565246582,
|
1120 |
+
"learning_rate": 3.7410858116860836e-05,
|
1121 |
+
"loss": 0.7696,
|
1122 |
+
"step": 1590
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.40376001514100057,
|
1126 |
+
"grad_norm": 0.6950120329856873,
|
1127 |
+
"learning_rate": 3.721913495600923e-05,
|
1128 |
+
"loss": 0.7946,
|
1129 |
+
"step": 1600
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.40628351523563183,
|
1133 |
+
"grad_norm": 0.5791555047035217,
|
1134 |
+
"learning_rate": 3.7026462899786726e-05,
|
1135 |
+
"loss": 0.7469,
|
1136 |
+
"step": 1610
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.4088070153302631,
|
1140 |
+
"grad_norm": 0.6242396235466003,
|
1141 |
+
"learning_rate": 3.683285691043272e-05,
|
1142 |
+
"loss": 0.7894,
|
1143 |
+
"step": 1620
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.41133051542489435,
|
1147 |
+
"grad_norm": 0.6625512838363647,
|
1148 |
+
"learning_rate": 3.663833202271257e-05,
|
1149 |
+
"loss": 0.7977,
|
1150 |
+
"step": 1630
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.4138540155195256,
|
1154 |
+
"grad_norm": 0.653052806854248,
|
1155 |
+
"learning_rate": 3.6442903342750084e-05,
|
1156 |
+
"loss": 0.7394,
|
1157 |
+
"step": 1640
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.4163775156141568,
|
1161 |
+
"grad_norm": 0.6416037678718567,
|
1162 |
+
"learning_rate": 3.624658604685443e-05,
|
1163 |
+
"loss": 0.7624,
|
1164 |
+
"step": 1650
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.41890101570878807,
|
1168 |
+
"grad_norm": 0.7198112607002258,
|
1169 |
+
"learning_rate": 3.604939538034158e-05,
|
1170 |
+
"loss": 0.7779,
|
1171 |
+
"step": 1660
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.42142451580341933,
|
1175 |
+
"grad_norm": 0.6925454139709473,
|
1176 |
+
"learning_rate": 3.585134665635041e-05,
|
1177 |
+
"loss": 0.7746,
|
1178 |
+
"step": 1670
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.4239480158980506,
|
1182 |
+
"grad_norm": 0.6133943200111389,
|
1183 |
+
"learning_rate": 3.565245525465355e-05,
|
1184 |
+
"loss": 0.8115,
|
1185 |
+
"step": 1680
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.42647151599268185,
|
1189 |
+
"grad_norm": 0.627083957195282,
|
1190 |
+
"learning_rate": 3.5452736620463064e-05,
|
1191 |
+
"loss": 0.7745,
|
1192 |
+
"step": 1690
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.4289950160873131,
|
1196 |
+
"grad_norm": 0.7416812777519226,
|
1197 |
+
"learning_rate": 3.525220626323097e-05,
|
1198 |
+
"loss": 0.7565,
|
1199 |
+
"step": 1700
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.43151851618194437,
|
1203 |
+
"grad_norm": 0.6600239276885986,
|
1204 |
+
"learning_rate": 3.5050879755444877e-05,
|
1205 |
+
"loss": 0.8086,
|
1206 |
+
"step": 1710
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.4340420162765756,
|
1210 |
+
"grad_norm": 0.6868900060653687,
|
1211 |
+
"learning_rate": 3.484877273141866e-05,
|
1212 |
+
"loss": 0.7782,
|
1213 |
+
"step": 1720
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.4365655163712069,
|
1217 |
+
"grad_norm": 0.6533142328262329,
|
1218 |
+
"learning_rate": 3.464590088607839e-05,
|
1219 |
+
"loss": 0.7917,
|
1220 |
+
"step": 1730
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.43908901646583814,
|
1224 |
+
"grad_norm": 0.7071284055709839,
|
1225 |
+
"learning_rate": 3.444227997374345e-05,
|
1226 |
+
"loss": 0.7987,
|
1227 |
+
"step": 1740
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.44161251656046935,
|
1231 |
+
"grad_norm": 0.7069833874702454,
|
1232 |
+
"learning_rate": 3.4237925806903184e-05,
|
1233 |
+
"loss": 0.782,
|
1234 |
+
"step": 1750
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.4441360166551006,
|
1238 |
+
"grad_norm": 0.5870257616043091,
|
1239 |
+
"learning_rate": 3.403285425498889e-05,
|
1240 |
+
"loss": 0.7802,
|
1241 |
+
"step": 1760
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.44665951674973187,
|
1245 |
+
"grad_norm": 0.7443609237670898,
|
1246 |
+
"learning_rate": 3.3827081243141534e-05,
|
1247 |
+
"loss": 0.751,
|
1248 |
+
"step": 1770
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.4491830168443631,
|
1252 |
+
"grad_norm": 0.64288729429245,
|
1253 |
+
"learning_rate": 3.362062275097496e-05,
|
1254 |
+
"loss": 0.8028,
|
1255 |
+
"step": 1780
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.4517065169389944,
|
1259 |
+
"grad_norm": 0.7132259607315063,
|
1260 |
+
"learning_rate": 3.341349481133507e-05,
|
1261 |
+
"loss": 0.7483,
|
1262 |
+
"step": 1790
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.45423001703362564,
|
1266 |
+
"grad_norm": 0.6608093976974487,
|
1267 |
+
"learning_rate": 3.320571350905466e-05,
|
1268 |
+
"loss": 0.7861,
|
1269 |
+
"step": 1800
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.4567535171282569,
|
1273 |
+
"grad_norm": 0.6749939322471619,
|
1274 |
+
"learning_rate": 3.299729497970444e-05,
|
1275 |
+
"loss": 0.8,
|
1276 |
+
"step": 1810
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.45927701722288816,
|
1280 |
+
"grad_norm": 0.6308214664459229,
|
1281 |
+
"learning_rate": 3.278825540833995e-05,
|
1282 |
+
"loss": 0.7682,
|
1283 |
+
"step": 1820
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.4618005173175194,
|
1287 |
+
"grad_norm": 0.6652118563652039,
|
1288 |
+
"learning_rate": 3.2578611028244656e-05,
|
1289 |
+
"loss": 0.7581,
|
1290 |
+
"step": 1830
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.4643240174121507,
|
1294 |
+
"grad_norm": 0.6874011158943176,
|
1295 |
+
"learning_rate": 3.2368378119669363e-05,
|
1296 |
+
"loss": 0.7395,
|
1297 |
+
"step": 1840
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.4668475175067819,
|
1301 |
+
"grad_norm": 0.580640971660614,
|
1302 |
+
"learning_rate": 3.215757300856796e-05,
|
1303 |
+
"loss": 0.7635,
|
1304 |
+
"step": 1850
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.46937101760141314,
|
1308 |
+
"grad_norm": 0.6897201538085938,
|
1309 |
+
"learning_rate": 3.194621206532957e-05,
|
1310 |
+
"loss": 0.7999,
|
1311 |
+
"step": 1860
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.4718945176960444,
|
1315 |
+
"grad_norm": 0.6152743697166443,
|
1316 |
+
"learning_rate": 3.173431170350732e-05,
|
1317 |
+
"loss": 0.7652,
|
1318 |
+
"step": 1870
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.47441801779067566,
|
1322 |
+
"grad_norm": 0.7078354358673096,
|
1323 |
+
"learning_rate": 3.152188837854369e-05,
|
1324 |
+
"loss": 0.7985,
|
1325 |
+
"step": 1880
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.4769415178853069,
|
1329 |
+
"grad_norm": 0.6471546292304993,
|
1330 |
+
"learning_rate": 3.130895858649264e-05,
|
1331 |
+
"loss": 0.7502,
|
1332 |
+
"step": 1890
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.4794650179799382,
|
1336 |
+
"grad_norm": 0.7108110189437866,
|
1337 |
+
"learning_rate": 3.109553886273863e-05,
|
1338 |
+
"loss": 0.7777,
|
1339 |
+
"step": 1900
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.48198851807456944,
|
1343 |
+
"grad_norm": 0.6540038585662842,
|
1344 |
+
"learning_rate": 3.088164578071246e-05,
|
1345 |
+
"loss": 0.7585,
|
1346 |
+
"step": 1910
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.4845120181692007,
|
1350 |
+
"grad_norm": 0.6966577172279358,
|
1351 |
+
"learning_rate": 3.066729595060431e-05,
|
1352 |
+
"loss": 0.7459,
|
1353 |
+
"step": 1920
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.48703551826383196,
|
1357 |
+
"grad_norm": 0.7039586901664734,
|
1358 |
+
"learning_rate": 3.0452506018073833e-05,
|
1359 |
+
"loss": 0.7829,
|
1360 |
+
"step": 1930
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.4895590183584632,
|
1364 |
+
"grad_norm": 0.7935706973075867,
|
1365 |
+
"learning_rate": 3.0237292662957473e-05,
|
1366 |
+
"loss": 0.7635,
|
1367 |
+
"step": 1940
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.4920825184530944,
|
1371 |
+
"grad_norm": 0.6353578567504883,
|
1372 |
+
"learning_rate": 3.0021672597973207e-05,
|
1373 |
+
"loss": 0.7573,
|
1374 |
+
"step": 1950
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.4946060185477257,
|
1378 |
+
"grad_norm": 0.6605427265167236,
|
1379 |
+
"learning_rate": 2.9805662567422676e-05,
|
1380 |
+
"loss": 0.7915,
|
1381 |
+
"step": 1960
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.49712951864235694,
|
1385 |
+
"grad_norm": 0.6967743635177612,
|
1386 |
+
"learning_rate": 2.9589279345890895e-05,
|
1387 |
+
"loss": 0.7787,
|
1388 |
+
"step": 1970
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.4996530187369882,
|
1392 |
+
"grad_norm": 0.566273033618927,
|
1393 |
+
"learning_rate": 2.9372539736943577e-05,
|
1394 |
+
"loss": 0.7719,
|
1395 |
+
"step": 1980
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.5021765188316195,
|
1399 |
+
"grad_norm": 0.596185028553009,
|
1400 |
+
"learning_rate": 2.9155460571822245e-05,
|
1401 |
+
"loss": 0.759,
|
1402 |
+
"step": 1990
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.5047000189262507,
|
1406 |
+
"grad_norm": 0.6854886412620544,
|
1407 |
+
"learning_rate": 2.893805870813717e-05,
|
1408 |
+
"loss": 0.7461,
|
1409 |
+
"step": 2000
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.5072235190208819,
|
1413 |
+
"grad_norm": 0.6499455571174622,
|
1414 |
+
"learning_rate": 2.872035102855826e-05,
|
1415 |
+
"loss": 0.7586,
|
1416 |
+
"step": 2010
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.5097470191155132,
|
1420 |
+
"grad_norm": 0.6669695377349854,
|
1421 |
+
"learning_rate": 2.850235443950402e-05,
|
1422 |
+
"loss": 0.7319,
|
1423 |
+
"step": 2020
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.5122705192101444,
|
1427 |
+
"grad_norm": 0.6255702972412109,
|
1428 |
+
"learning_rate": 2.8284085869828665e-05,
|
1429 |
+
"loss": 0.7687,
|
1430 |
+
"step": 2030
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.5147940193047758,
|
1434 |
+
"grad_norm": 0.645270824432373,
|
1435 |
+
"learning_rate": 2.8065562269507463e-05,
|
1436 |
+
"loss": 0.7764,
|
1437 |
+
"step": 2040
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.517317519399407,
|
1441 |
+
"grad_norm": 0.7418912053108215,
|
1442 |
+
"learning_rate": 2.7846800608320485e-05,
|
1443 |
+
"loss": 0.7571,
|
1444 |
+
"step": 2050
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.5198410194940383,
|
1448 |
+
"grad_norm": 0.6680746674537659,
|
1449 |
+
"learning_rate": 2.7627817874534762e-05,
|
1450 |
+
"loss": 0.7489,
|
1451 |
+
"step": 2060
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.5223645195886695,
|
1455 |
+
"grad_norm": 0.6707837581634521,
|
1456 |
+
"learning_rate": 2.7408631073585068e-05,
|
1457 |
+
"loss": 0.7345,
|
1458 |
+
"step": 2070
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.5248880196833008,
|
1462 |
+
"grad_norm": 0.664960503578186,
|
1463 |
+
"learning_rate": 2.7189257226753305e-05,
|
1464 |
+
"loss": 0.7602,
|
1465 |
+
"step": 2080
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.527411519777932,
|
1469 |
+
"grad_norm": 0.618732213973999,
|
1470 |
+
"learning_rate": 2.696971336984672e-05,
|
1471 |
+
"loss": 0.7831,
|
1472 |
+
"step": 2090
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.5299350198725632,
|
1476 |
+
"grad_norm": 0.7285112142562866,
|
1477 |
+
"learning_rate": 2.6750016551874945e-05,
|
1478 |
+
"loss": 0.7575,
|
1479 |
+
"step": 2100
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.5324585199671945,
|
1483 |
+
"grad_norm": 0.6303609013557434,
|
1484 |
+
"learning_rate": 2.6530183833726025e-05,
|
1485 |
+
"loss": 0.7567,
|
1486 |
+
"step": 2110
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.5349820200618257,
|
1490 |
+
"grad_norm": 0.7151260375976562,
|
1491 |
+
"learning_rate": 2.6310232286841546e-05,
|
1492 |
+
"loss": 0.7876,
|
1493 |
+
"step": 2120
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.537505520156457,
|
1497 |
+
"grad_norm": 0.6547929048538208,
|
1498 |
+
"learning_rate": 2.609017899189092e-05,
|
1499 |
+
"loss": 0.7723,
|
1500 |
+
"step": 2130
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.5400290202510882,
|
1504 |
+
"grad_norm": 0.6668947339057922,
|
1505 |
+
"learning_rate": 2.587004103744495e-05,
|
1506 |
+
"loss": 0.7261,
|
1507 |
+
"step": 2140
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.5425525203457195,
|
1511 |
+
"grad_norm": 0.5897696614265442,
|
1512 |
+
"learning_rate": 2.564983551864882e-05,
|
1513 |
+
"loss": 0.7386,
|
1514 |
+
"step": 2150
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.5450760204403508,
|
1518 |
+
"grad_norm": 0.7253137826919556,
|
1519 |
+
"learning_rate": 2.54295795358945e-05,
|
1520 |
+
"loss": 0.762,
|
1521 |
+
"step": 2160
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.5475995205349821,
|
1525 |
+
"grad_norm": 0.6665747761726379,
|
1526 |
+
"learning_rate": 2.5209290193492834e-05,
|
1527 |
+
"loss": 0.7558,
|
1528 |
+
"step": 2170
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.5501230206296133,
|
1532 |
+
"grad_norm": 0.6269178986549377,
|
1533 |
+
"learning_rate": 2.4988984598345247e-05,
|
1534 |
+
"loss": 0.7248,
|
1535 |
+
"step": 2180
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.5526465207242445,
|
1539 |
+
"grad_norm": 0.6443243622779846,
|
1540 |
+
"learning_rate": 2.4768679858615304e-05,
|
1541 |
+
"loss": 0.7699,
|
1542 |
+
"step": 2190
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.5551700208188758,
|
1546 |
+
"grad_norm": 0.7323073744773865,
|
1547 |
+
"learning_rate": 2.454839308240014e-05,
|
1548 |
+
"loss": 0.796,
|
1549 |
+
"step": 2200
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.557693520913507,
|
1553 |
+
"grad_norm": 0.6538411974906921,
|
1554 |
+
"learning_rate": 2.4328141376401903e-05,
|
1555 |
+
"loss": 0.7521,
|
1556 |
+
"step": 2210
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.5602170210081383,
|
1560 |
+
"grad_norm": 0.638306200504303,
|
1561 |
+
"learning_rate": 2.4107941844599312e-05,
|
1562 |
+
"loss": 0.736,
|
1563 |
+
"step": 2220
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.5627405211027695,
|
1567 |
+
"grad_norm": 0.6431130170822144,
|
1568 |
+
"learning_rate": 2.3887811586919424e-05,
|
1569 |
+
"loss": 0.7688,
|
1570 |
+
"step": 2230
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.5652640211974008,
|
1574 |
+
"grad_norm": 0.6741809844970703,
|
1575 |
+
"learning_rate": 2.3667767697909694e-05,
|
1576 |
+
"loss": 0.7445,
|
1577 |
+
"step": 2240
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.567787521292032,
|
1581 |
+
"grad_norm": 0.6638673543930054,
|
1582 |
+
"learning_rate": 2.3447827265410517e-05,
|
1583 |
+
"loss": 0.7898,
|
1584 |
+
"step": 2250
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.5703110213866633,
|
1588 |
+
"grad_norm": 0.708502471446991,
|
1589 |
+
"learning_rate": 2.3228007369228178e-05,
|
1590 |
+
"loss": 0.8121,
|
1591 |
+
"step": 2260
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.5728345214812945,
|
1595 |
+
"grad_norm": 0.6407279372215271,
|
1596 |
+
"learning_rate": 2.3008325079808576e-05,
|
1597 |
+
"loss": 0.7682,
|
1598 |
+
"step": 2270
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.5753580215759259,
|
1602 |
+
"grad_norm": 0.65432208776474,
|
1603 |
+
"learning_rate": 2.2788797456911503e-05,
|
1604 |
+
"loss": 0.7305,
|
1605 |
+
"step": 2280
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.5778815216705571,
|
1609 |
+
"grad_norm": 0.7159484624862671,
|
1610 |
+
"learning_rate": 2.2569441548285934e-05,
|
1611 |
+
"loss": 0.7618,
|
1612 |
+
"step": 2290
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.5804050217651883,
|
1616 |
+
"grad_norm": 0.5184557437896729,
|
1617 |
+
"learning_rate": 2.2350274388346064e-05,
|
1618 |
+
"loss": 0.7192,
|
1619 |
+
"step": 2300
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.5829285218598196,
|
1623 |
+
"grad_norm": 0.6150662302970886,
|
1624 |
+
"learning_rate": 2.213131299684858e-05,
|
1625 |
+
"loss": 0.7764,
|
1626 |
+
"step": 2310
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.5854520219544508,
|
1630 |
+
"grad_norm": 0.708900511264801,
|
1631 |
+
"learning_rate": 2.191257437757086e-05,
|
1632 |
+
"loss": 0.7408,
|
1633 |
+
"step": 2320
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.5879755220490821,
|
1637 |
+
"grad_norm": 0.5827603340148926,
|
1638 |
+
"learning_rate": 2.16940755169906e-05,
|
1639 |
+
"loss": 0.7701,
|
1640 |
+
"step": 2330
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.5904990221437133,
|
1644 |
+
"grad_norm": 0.7515769600868225,
|
1645 |
+
"learning_rate": 2.1475833382966647e-05,
|
1646 |
+
"loss": 0.805,
|
1647 |
+
"step": 2340
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.5930225222383446,
|
1651 |
+
"grad_norm": 0.6381510496139526,
|
1652 |
+
"learning_rate": 2.1257864923421404e-05,
|
1653 |
+
"loss": 0.7889,
|
1654 |
+
"step": 2350
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.5955460223329758,
|
1658 |
+
"grad_norm": 0.6384143829345703,
|
1659 |
+
"learning_rate": 2.1040187065024605e-05,
|
1660 |
+
"loss": 0.7111,
|
1661 |
+
"step": 2360
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.5980695224276071,
|
1665 |
+
"grad_norm": 0.6297293305397034,
|
1666 |
+
"learning_rate": 2.0822816711878978e-05,
|
1667 |
+
"loss": 0.7759,
|
1668 |
+
"step": 2370
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.6005930225222383,
|
1672 |
+
"grad_norm": 0.6517510414123535,
|
1673 |
+
"learning_rate": 2.0605770744207413e-05,
|
1674 |
+
"loss": 0.7514,
|
1675 |
+
"step": 2380
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.6031165226168695,
|
1679 |
+
"grad_norm": 0.6666356325149536,
|
1680 |
+
"learning_rate": 2.0389066017042192e-05,
|
1681 |
+
"loss": 0.7308,
|
1682 |
+
"step": 2390
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.6056400227115009,
|
1686 |
+
"grad_norm": 0.8132819533348083,
|
1687 |
+
"learning_rate": 2.0172719358916042e-05,
|
1688 |
+
"loss": 0.7363,
|
1689 |
+
"step": 2400
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.6081635228061321,
|
1693 |
+
"grad_norm": 0.7209652662277222,
|
1694 |
+
"learning_rate": 1.9956747570555288e-05,
|
1695 |
+
"loss": 0.7838,
|
1696 |
+
"step": 2410
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.6106870229007634,
|
1700 |
+
"grad_norm": 0.6177300214767456,
|
1701 |
+
"learning_rate": 1.9741167423575186e-05,
|
1702 |
+
"loss": 0.7153,
|
1703 |
+
"step": 2420
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.6132105229953946,
|
1707 |
+
"grad_norm": 0.6164495944976807,
|
1708 |
+
"learning_rate": 1.9525995659177484e-05,
|
1709 |
+
"loss": 0.7502,
|
1710 |
+
"step": 2430
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.6157340230900259,
|
1714 |
+
"grad_norm": 0.6001858115196228,
|
1715 |
+
"learning_rate": 1.9311248986850365e-05,
|
1716 |
+
"loss": 0.7396,
|
1717 |
+
"step": 2440
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.6182575231846571,
|
1721 |
+
"grad_norm": 0.661919116973877,
|
1722 |
+
"learning_rate": 1.9096944083070866e-05,
|
1723 |
+
"loss": 0.7557,
|
1724 |
+
"step": 2450
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.6207810232792884,
|
1728 |
+
"grad_norm": 0.6734655499458313,
|
1729 |
+
"learning_rate": 1.8883097590009775e-05,
|
1730 |
+
"loss": 0.7659,
|
1731 |
+
"step": 2460
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.6233045233739196,
|
1735 |
+
"grad_norm": 0.6683171391487122,
|
1736 |
+
"learning_rate": 1.866972611423936e-05,
|
1737 |
+
"loss": 0.7464,
|
1738 |
+
"step": 2470
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.6258280234685509,
|
1742 |
+
"grad_norm": 0.7079278826713562,
|
1743 |
+
"learning_rate": 1.8456846225443648e-05,
|
1744 |
+
"loss": 0.7051,
|
1745 |
+
"step": 2480
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.6283515235631821,
|
1749 |
+
"grad_norm": 0.6441357731819153,
|
1750 |
+
"learning_rate": 1.8244474455131792e-05,
|
1751 |
+
"loss": 0.7441,
|
1752 |
+
"step": 2490
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.6308750236578133,
|
1756 |
+
"grad_norm": 0.7199136018753052,
|
1757 |
+
"learning_rate": 1.8032627295354183e-05,
|
1758 |
+
"loss": 0.7419,
|
1759 |
+
"step": 2500
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.6333985237524447,
|
1763 |
+
"grad_norm": 0.7727274894714355,
|
1764 |
+
"learning_rate": 1.7821321197421837e-05,
|
1765 |
+
"loss": 0.785,
|
1766 |
+
"step": 2510
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.6359220238470759,
|
1770 |
+
"grad_norm": 0.6691886782646179,
|
1771 |
+
"learning_rate": 1.761057257062876e-05,
|
1772 |
+
"loss": 0.7576,
|
1773 |
+
"step": 2520
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.6384455239417072,
|
1777 |
+
"grad_norm": 0.5676743388175964,
|
1778 |
+
"learning_rate": 1.740039778097772e-05,
|
1779 |
+
"loss": 0.7151,
|
1780 |
+
"step": 2530
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.6409690240363384,
|
1784 |
+
"grad_norm": 0.6777900457382202,
|
1785 |
+
"learning_rate": 1.7190813149909274e-05,
|
1786 |
+
"loss": 0.7477,
|
1787 |
+
"step": 2540
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.6434925241309697,
|
1791 |
+
"grad_norm": 0.691109836101532,
|
1792 |
+
"learning_rate": 1.6981834953034344e-05,
|
1793 |
+
"loss": 0.7536,
|
1794 |
+
"step": 2550
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.6460160242256009,
|
1798 |
+
"grad_norm": 0.7271637916564941,
|
1799 |
+
"learning_rate": 1.677347941887028e-05,
|
1800 |
+
"loss": 0.7181,
|
1801 |
+
"step": 2560
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.6485395243202322,
|
1805 |
+
"grad_norm": 0.693095326423645,
|
1806 |
+
"learning_rate": 1.656576272758061e-05,
|
1807 |
+
"loss": 0.7703,
|
1808 |
+
"step": 2570
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.6510630244148634,
|
1812 |
+
"grad_norm": 0.6617145538330078,
|
1813 |
+
"learning_rate": 1.6358701009718577e-05,
|
1814 |
+
"loss": 0.7505,
|
1815 |
+
"step": 2580
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.6535865245094946,
|
1819 |
+
"grad_norm": 0.5836735963821411,
|
1820 |
+
"learning_rate": 1.615231034497444e-05,
|
1821 |
+
"loss": 0.7629,
|
1822 |
+
"step": 2590
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.6561100246041259,
|
1826 |
+
"grad_norm": 0.767706036567688,
|
1827 |
+
"learning_rate": 1.5946606760926865e-05,
|
1828 |
+
"loss": 0.7311,
|
1829 |
+
"step": 2600
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.6586335246987571,
|
1833 |
+
"grad_norm": 1.1599899530410767,
|
1834 |
+
"learning_rate": 1.574160623179816e-05,
|
1835 |
+
"loss": 0.7538,
|
1836 |
+
"step": 2610
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.6611570247933884,
|
1840 |
+
"grad_norm": 0.6588570475578308,
|
1841 |
+
"learning_rate": 1.553732467721392e-05,
|
1842 |
+
"loss": 0.7181,
|
1843 |
+
"step": 2620
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.6636805248880197,
|
1847 |
+
"grad_norm": 0.5837569832801819,
|
1848 |
+
"learning_rate": 1.5333777960966616e-05,
|
1849 |
+
"loss": 0.7218,
|
1850 |
+
"step": 2630
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.666204024982651,
|
1854 |
+
"grad_norm": 0.5983703136444092,
|
1855 |
+
"learning_rate": 1.5130981889783795e-05,
|
1856 |
+
"loss": 0.728,
|
1857 |
+
"step": 2640
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.6687275250772822,
|
1861 |
+
"grad_norm": 0.6551673412322998,
|
1862 |
+
"learning_rate": 1.4928952212100483e-05,
|
1863 |
+
"loss": 0.7561,
|
1864 |
+
"step": 2650
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.6712510251719135,
|
1868 |
+
"grad_norm": 0.5981004238128662,
|
1869 |
+
"learning_rate": 1.4727704616836296e-05,
|
1870 |
+
"loss": 0.7553,
|
1871 |
+
"step": 2660
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.6737745252665447,
|
1875 |
+
"grad_norm": 0.6593780517578125,
|
1876 |
+
"learning_rate": 1.4527254732177043e-05,
|
1877 |
+
"loss": 0.7428,
|
1878 |
+
"step": 2670
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.676298025361176,
|
1882 |
+
"grad_norm": 0.6018021702766418,
|
1883 |
+
"learning_rate": 1.4327618124361114e-05,
|
1884 |
+
"loss": 0.7489,
|
1885 |
+
"step": 2680
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.6788215254558072,
|
1889 |
+
"grad_norm": 0.629327118396759,
|
1890 |
+
"learning_rate": 1.412881029647065e-05,
|
1891 |
+
"loss": 0.7199,
|
1892 |
+
"step": 2690
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.6813450255504384,
|
1896 |
+
"grad_norm": 0.616880476474762,
|
1897 |
+
"learning_rate": 1.3930846687227664e-05,
|
1898 |
+
"loss": 0.7236,
|
1899 |
+
"step": 2700
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.6838685256450697,
|
1903 |
+
"grad_norm": 0.6667315363883972,
|
1904 |
+
"learning_rate": 1.3733742669795049e-05,
|
1905 |
+
"loss": 0.7679,
|
1906 |
+
"step": 2710
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.6863920257397009,
|
1910 |
+
"grad_norm": 0.7159212231636047,
|
1911 |
+
"learning_rate": 1.3537513550582853e-05,
|
1912 |
+
"loss": 0.7577,
|
1913 |
+
"step": 2720
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.6889155258343322,
|
1917 |
+
"grad_norm": 0.5977271199226379,
|
1918 |
+
"learning_rate": 1.3342174568059527e-05,
|
1919 |
+
"loss": 0.7289,
|
1920 |
+
"step": 2730
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.6914390259289634,
|
1924 |
+
"grad_norm": 0.6134091019630432,
|
1925 |
+
"learning_rate": 1.3147740891568661e-05,
|
1926 |
+
"loss": 0.7159,
|
1927 |
+
"step": 2740
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.6939625260235948,
|
1931 |
+
"grad_norm": 0.6235146522521973,
|
1932 |
+
"learning_rate": 1.2954227620150904e-05,
|
1933 |
+
"loss": 0.7587,
|
1934 |
+
"step": 2750
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.696486026118226,
|
1938 |
+
"grad_norm": 0.6821407079696655,
|
1939 |
+
"learning_rate": 1.2761649781371479e-05,
|
1940 |
+
"loss": 0.7366,
|
1941 |
+
"step": 2760
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.6990095262128573,
|
1945 |
+
"grad_norm": 0.6241364479064941,
|
1946 |
+
"learning_rate": 1.257002233015318e-05,
|
1947 |
+
"loss": 0.7587,
|
1948 |
+
"step": 2770
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.7015330263074885,
|
1952 |
+
"grad_norm": 0.6628735065460205,
|
1953 |
+
"learning_rate": 1.2379360147614994e-05,
|
1954 |
+
"loss": 0.7289,
|
1955 |
+
"step": 2780
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.7040565264021197,
|
1959 |
+
"grad_norm": 0.6374642252922058,
|
1960 |
+
"learning_rate": 1.2189678039916532e-05,
|
1961 |
+
"loss": 0.7036,
|
1962 |
+
"step": 2790
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.706580026496751,
|
1966 |
+
"grad_norm": 0.5973037481307983,
|
1967 |
+
"learning_rate": 1.2000990737108225e-05,
|
1968 |
+
"loss": 0.723,
|
1969 |
+
"step": 2800
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.7091035265913822,
|
1973 |
+
"grad_norm": 0.7454132437705994,
|
1974 |
+
"learning_rate": 1.1813312891987392e-05,
|
1975 |
+
"loss": 0.7631,
|
1976 |
+
"step": 2810
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.7116270266860135,
|
1980 |
+
"grad_norm": 0.6454845070838928,
|
1981 |
+
"learning_rate": 1.1626659078960424e-05,
|
1982 |
+
"loss": 0.7357,
|
1983 |
+
"step": 2820
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.7141505267806447,
|
1987 |
+
"grad_norm": 0.616027295589447,
|
1988 |
+
"learning_rate": 1.1441043792910936e-05,
|
1989 |
+
"loss": 0.7326,
|
1990 |
+
"step": 2830
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.716674026875276,
|
1994 |
+
"grad_norm": 0.7227725386619568,
|
1995 |
+
"learning_rate": 1.1256481448074179e-05,
|
1996 |
+
"loss": 0.7293,
|
1997 |
+
"step": 2840
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.7191975269699072,
|
2001 |
+
"grad_norm": 0.765404999256134,
|
2002 |
+
"learning_rate": 1.1072986376917638e-05,
|
2003 |
+
"loss": 0.7395,
|
2004 |
+
"step": 2850
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.7217210270645386,
|
2008 |
+
"grad_norm": 0.6478826403617859,
|
2009 |
+
"learning_rate": 1.0890572829028087e-05,
|
2010 |
+
"loss": 0.7734,
|
2011 |
+
"step": 2860
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.7242445271591698,
|
2015 |
+
"grad_norm": 0.6000937819480896,
|
2016 |
+
"learning_rate": 1.0709254970004937e-05,
|
2017 |
+
"loss": 0.7247,
|
2018 |
+
"step": 2870
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.7267680272538011,
|
2022 |
+
"grad_norm": 0.5255608558654785,
|
2023 |
+
"learning_rate": 1.0529046880360263e-05,
|
2024 |
+
"loss": 0.7219,
|
2025 |
+
"step": 2880
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.7292915273484323,
|
2029 |
+
"grad_norm": 0.5780526995658875,
|
2030 |
+
"learning_rate": 1.034996255442529e-05,
|
2031 |
+
"loss": 0.7658,
|
2032 |
+
"step": 2890
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.7318150274430635,
|
2036 |
+
"grad_norm": 0.5964454412460327,
|
2037 |
+
"learning_rate": 1.0172015899263712e-05,
|
2038 |
+
"loss": 0.7363,
|
2039 |
+
"step": 2900
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.7343385275376948,
|
2043 |
+
"grad_norm": 0.6541391015052795,
|
2044 |
+
"learning_rate": 9.995220733591639e-06,
|
2045 |
+
"loss": 0.7214,
|
2046 |
+
"step": 2910
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.736862027632326,
|
2050 |
+
"grad_norm": 0.572470486164093,
|
2051 |
+
"learning_rate": 9.819590786704572e-06,
|
2052 |
+
"loss": 0.7559,
|
2053 |
+
"step": 2920
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.7393855277269573,
|
2057 |
+
"grad_norm": 0.6316998600959778,
|
2058 |
+
"learning_rate": 9.645139697411149e-06,
|
2059 |
+
"loss": 0.7289,
|
2060 |
+
"step": 2930
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.7419090278215885,
|
2064 |
+
"grad_norm": 0.6283255815505981,
|
2065 |
+
"learning_rate": 9.471881012974071e-06,
|
2066 |
+
"loss": 0.754,
|
2067 |
+
"step": 2940
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.7444325279162198,
|
2071 |
+
"grad_norm": 0.6679040193557739,
|
2072 |
+
"learning_rate": 9.299828188058013e-06,
|
2073 |
+
"loss": 0.7417,
|
2074 |
+
"step": 2950
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.746956028010851,
|
2078 |
+
"grad_norm": 0.6345584988594055,
|
2079 |
+
"learning_rate": 9.128994583684838e-06,
|
2080 |
+
"loss": 0.7222,
|
2081 |
+
"step": 2960
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.7494795281054824,
|
2085 |
+
"grad_norm": 0.6412184238433838,
|
2086 |
+
"learning_rate": 8.959393466195972e-06,
|
2087 |
+
"loss": 0.7713,
|
2088 |
+
"step": 2970
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.7520030282001136,
|
2092 |
+
"grad_norm": 0.6120537519454956,
|
2093 |
+
"learning_rate": 8.791038006222233e-06,
|
2094 |
+
"loss": 0.7494,
|
2095 |
+
"step": 2980
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.7545265282947448,
|
2099 |
+
"grad_norm": 0.6384350657463074,
|
2100 |
+
"learning_rate": 8.623941277660994e-06,
|
2101 |
+
"loss": 0.7241,
|
2102 |
+
"step": 2990
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.7570500283893761,
|
2106 |
+
"grad_norm": 0.6902556419372559,
|
2107 |
+
"learning_rate": 8.458116256660981e-06,
|
2108 |
+
"loss": 0.7677,
|
2109 |
+
"step": 3000
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.7595735284840073,
|
2113 |
+
"grad_norm": 0.6172592639923096,
|
2114 |
+
"learning_rate": 8.293575820614508e-06,
|
2115 |
+
"loss": 0.741,
|
2116 |
+
"step": 3010
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.7620970285786386,
|
2120 |
+
"grad_norm": 0.6649114489555359,
|
2121 |
+
"learning_rate": 8.130332747157542e-06,
|
2122 |
+
"loss": 0.6986,
|
2123 |
+
"step": 3020
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.7646205286732698,
|
2127 |
+
"grad_norm": 0.8120855689048767,
|
2128 |
+
"learning_rate": 7.968399713177366e-06,
|
2129 |
+
"loss": 0.7496,
|
2130 |
+
"step": 3030
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.7671440287679011,
|
2134 |
+
"grad_norm": 0.6434275507926941,
|
2135 |
+
"learning_rate": 7.807789293828204e-06,
|
2136 |
+
"loss": 0.7617,
|
2137 |
+
"step": 3040
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.7696675288625323,
|
2141 |
+
"grad_norm": 0.6495864987373352,
|
2142 |
+
"learning_rate": 7.648513961554607e-06,
|
2143 |
+
"loss": 0.6993,
|
2144 |
+
"step": 3050
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.7721910289571636,
|
2148 |
+
"grad_norm": 0.5868855714797974,
|
2149 |
+
"learning_rate": 7.4905860851229605e-06,
|
2150 |
+
"loss": 0.7572,
|
2151 |
+
"step": 3060
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.7747145290517948,
|
2155 |
+
"grad_norm": 0.689618706703186,
|
2156 |
+
"learning_rate": 7.334017928660902e-06,
|
2157 |
+
"loss": 0.7454,
|
2158 |
+
"step": 3070
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.7772380291464261,
|
2162 |
+
"grad_norm": 0.6041099429130554,
|
2163 |
+
"learning_rate": 7.1788216507049865e-06,
|
2164 |
+
"loss": 0.7309,
|
2165 |
+
"step": 3080
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.7797615292410573,
|
2169 |
+
"grad_norm": 0.6858187317848206,
|
2170 |
+
"learning_rate": 7.0250093032564494e-06,
|
2171 |
+
"loss": 0.6921,
|
2172 |
+
"step": 3090
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.7822850293356886,
|
2176 |
+
"grad_norm": 0.625678539276123,
|
2177 |
+
"learning_rate": 6.872592830845339e-06,
|
2178 |
+
"loss": 0.7257,
|
2179 |
+
"step": 3100
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.7848085294303199,
|
2183 |
+
"grad_norm": 0.574103593826294,
|
2184 |
+
"learning_rate": 6.72158406960289e-06,
|
2185 |
+
"loss": 0.7532,
|
2186 |
+
"step": 3110
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.7873320295249511,
|
2190 |
+
"grad_norm": 0.5581086874008179,
|
2191 |
+
"learning_rate": 6.571994746342439e-06,
|
2192 |
+
"loss": 0.7354,
|
2193 |
+
"step": 3120
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.7898555296195824,
|
2197 |
+
"grad_norm": 0.6243663430213928,
|
2198 |
+
"learning_rate": 6.4238364776486785e-06,
|
2199 |
+
"loss": 0.7154,
|
2200 |
+
"step": 3130
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.7923790297142136,
|
2204 |
+
"grad_norm": 0.6376320719718933,
|
2205 |
+
"learning_rate": 6.277120768975644e-06,
|
2206 |
+
"loss": 0.7647,
|
2207 |
+
"step": 3140
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.7949025298088449,
|
2211 |
+
"grad_norm": 0.7120991945266724,
|
2212 |
+
"learning_rate": 6.131859013753155e-06,
|
2213 |
+
"loss": 0.7199,
|
2214 |
+
"step": 3150
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.7974260299034761,
|
2218 |
+
"grad_norm": 0.6970154643058777,
|
2219 |
+
"learning_rate": 5.988062492502117e-06,
|
2220 |
+
"loss": 0.7067,
|
2221 |
+
"step": 3160
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.7999495299981074,
|
2225 |
+
"grad_norm": 0.5977396368980408,
|
2226 |
+
"learning_rate": 5.8457423719584435e-06,
|
2227 |
+
"loss": 0.7244,
|
2228 |
+
"step": 3170
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.8024730300927386,
|
2232 |
+
"grad_norm": 0.6535403728485107,
|
2233 |
+
"learning_rate": 5.704909704205949e-06,
|
2234 |
+
"loss": 0.7529,
|
2235 |
+
"step": 3180
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.8049965301873698,
|
2239 |
+
"grad_norm": 0.6335867643356323,
|
2240 |
+
"learning_rate": 5.565575425818054e-06,
|
2241 |
+
"loss": 0.7417,
|
2242 |
+
"step": 3190
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.8075200302820011,
|
2246 |
+
"grad_norm": 0.6783677339553833,
|
2247 |
+
"learning_rate": 5.427750357008468e-06,
|
2248 |
+
"loss": 0.7037,
|
2249 |
+
"step": 3200
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.8100435303766323,
|
2253 |
+
"grad_norm": 0.6452818512916565,
|
2254 |
+
"learning_rate": 5.291445200790982e-06,
|
2255 |
+
"loss": 0.7491,
|
2256 |
+
"step": 3210
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.8125670304712637,
|
2260 |
+
"grad_norm": 0.6002216935157776,
|
2261 |
+
"learning_rate": 5.156670542148267e-06,
|
2262 |
+
"loss": 0.7501,
|
2263 |
+
"step": 3220
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.8150905305658949,
|
2267 |
+
"grad_norm": 0.7028263211250305,
|
2268 |
+
"learning_rate": 5.023436847209887e-06,
|
2269 |
+
"loss": 0.741,
|
2270 |
+
"step": 3230
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.8176140306605262,
|
2274 |
+
"grad_norm": 0.6382498145103455,
|
2275 |
+
"learning_rate": 4.891754462439557e-06,
|
2276 |
+
"loss": 0.7066,
|
2277 |
+
"step": 3240
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.8201375307551574,
|
2281 |
+
"grad_norm": 0.6723865270614624,
|
2282 |
+
"learning_rate": 4.761633613831645e-06,
|
2283 |
+
"loss": 0.7426,
|
2284 |
+
"step": 3250
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.8226610308497887,
|
2288 |
+
"grad_norm": 0.7076628804206848,
|
2289 |
+
"learning_rate": 4.6330844061170914e-06,
|
2290 |
+
"loss": 0.7148,
|
2291 |
+
"step": 3260
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.8251845309444199,
|
2295 |
+
"grad_norm": 0.6604047417640686,
|
2296 |
+
"learning_rate": 4.506116821978662e-06,
|
2297 |
+
"loss": 0.7268,
|
2298 |
+
"step": 3270
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.8277080310390512,
|
2302 |
+
"grad_norm": 0.5714926719665527,
|
2303 |
+
"learning_rate": 4.380740721275786e-06,
|
2304 |
+
"loss": 0.7508,
|
2305 |
+
"step": 3280
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.8302315311336824,
|
2309 |
+
"grad_norm": 0.6624537110328674,
|
2310 |
+
"learning_rate": 4.25696584027882e-06,
|
2311 |
+
"loss": 0.7313,
|
2312 |
+
"step": 3290
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.8327550312283136,
|
2316 |
+
"grad_norm": 0.7087505459785461,
|
2317 |
+
"learning_rate": 4.134801790913006e-06,
|
2318 |
+
"loss": 0.6936,
|
2319 |
+
"step": 3300
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.8352785313229449,
|
2323 |
+
"grad_norm": 0.7512862682342529,
|
2324 |
+
"learning_rate": 4.014258060012005e-06,
|
2325 |
+
"loss": 0.7525,
|
2326 |
+
"step": 3310
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.8378020314175761,
|
2330 |
+
"grad_norm": 0.5958043932914734,
|
2331 |
+
"learning_rate": 3.895344008581222e-06,
|
2332 |
+
"loss": 0.7235,
|
2333 |
+
"step": 3320
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.8403255315122075,
|
2337 |
+
"grad_norm": 0.7010710835456848,
|
2338 |
+
"learning_rate": 3.7780688710708223e-06,
|
2339 |
+
"loss": 0.7122,
|
2340 |
+
"step": 3330
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.8428490316068387,
|
2344 |
+
"grad_norm": 0.64909827709198,
|
2345 |
+
"learning_rate": 3.6624417546586574e-06,
|
2346 |
+
"loss": 0.6846,
|
2347 |
+
"step": 3340
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.84537253170147,
|
2351 |
+
"grad_norm": 0.7238036394119263,
|
2352 |
+
"learning_rate": 3.548471638542991e-06,
|
2353 |
+
"loss": 0.7514,
|
2354 |
+
"step": 3350
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.8478960317961012,
|
2358 |
+
"grad_norm": 0.6112589240074158,
|
2359 |
+
"learning_rate": 3.436167373245247e-06,
|
2360 |
+
"loss": 0.7297,
|
2361 |
+
"step": 3360
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.8504195318907325,
|
2365 |
+
"grad_norm": 0.6378879547119141,
|
2366 |
+
"learning_rate": 3.325537679922672e-06,
|
2367 |
+
"loss": 0.7429,
|
2368 |
+
"step": 3370
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.8529430319853637,
|
2372 |
+
"grad_norm": 0.7128148674964905,
|
2373 |
+
"learning_rate": 3.2165911496911173e-06,
|
2374 |
+
"loss": 0.7168,
|
2375 |
+
"step": 3380
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.8554665320799949,
|
2379 |
+
"grad_norm": 0.6448369026184082,
|
2380 |
+
"learning_rate": 3.1093362429578414e-06,
|
2381 |
+
"loss": 0.7358,
|
2382 |
+
"step": 3390
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.8579900321746262,
|
2386 |
+
"grad_norm": 0.5888521075248718,
|
2387 |
+
"learning_rate": 3.0037812887645483e-06,
|
2388 |
+
"loss": 0.7522,
|
2389 |
+
"step": 3400
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.8605135322692574,
|
2393 |
+
"grad_norm": 0.5976009368896484,
|
2394 |
+
"learning_rate": 2.8999344841405373e-06,
|
2395 |
+
"loss": 0.7222,
|
2396 |
+
"step": 3410
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.8630370323638887,
|
2400 |
+
"grad_norm": 0.6030629277229309,
|
2401 |
+
"learning_rate": 2.7978038934662024e-06,
|
2402 |
+
"loss": 0.7157,
|
2403 |
+
"step": 3420
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.8655605324585199,
|
2407 |
+
"grad_norm": 0.6424097418785095,
|
2408 |
+
"learning_rate": 2.697397447846725e-06,
|
2409 |
+
"loss": 0.7324,
|
2410 |
+
"step": 3430
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.8680840325531513,
|
2414 |
+
"grad_norm": 0.6089041829109192,
|
2415 |
+
"learning_rate": 2.5987229444962237e-06,
|
2416 |
+
"loss": 0.7447,
|
2417 |
+
"step": 3440
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.8706075326477825,
|
2421 |
+
"grad_norm": 0.6227433681488037,
|
2422 |
+
"learning_rate": 2.501788046132203e-06,
|
2423 |
+
"loss": 0.7552,
|
2424 |
+
"step": 3450
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.8731310327424138,
|
2428 |
+
"grad_norm": 0.5971252918243408,
|
2429 |
+
"learning_rate": 2.4066002803805386e-06,
|
2430 |
+
"loss": 0.7276,
|
2431 |
+
"step": 3460
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.875654532837045,
|
2435 |
+
"grad_norm": 0.6682915091514587,
|
2436 |
+
"learning_rate": 2.313167039190861e-06,
|
2437 |
+
"loss": 0.7312,
|
2438 |
+
"step": 3470
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.8781780329316763,
|
2442 |
+
"grad_norm": 0.6341772079467773,
|
2443 |
+
"learning_rate": 2.2214955782625752e-06,
|
2444 |
+
"loss": 0.7303,
|
2445 |
+
"step": 3480
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.8807015330263075,
|
2449 |
+
"grad_norm": 0.6950182914733887,
|
2450 |
+
"learning_rate": 2.1315930164813507e-06,
|
2451 |
+
"loss": 0.757,
|
2452 |
+
"step": 3490
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.8832250331209387,
|
2456 |
+
"grad_norm": 0.6251794099807739,
|
2457 |
+
"learning_rate": 2.0434663353663536e-06,
|
2458 |
+
"loss": 0.7293,
|
2459 |
+
"step": 3500
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.88574853321557,
|
2463 |
+
"grad_norm": 0.6550153493881226,
|
2464 |
+
"learning_rate": 1.9571223785280314e-06,
|
2465 |
+
"loss": 0.7323,
|
2466 |
+
"step": 3510
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.8882720333102012,
|
2470 |
+
"grad_norm": 0.6896747350692749,
|
2471 |
+
"learning_rate": 1.8725678511367001e-06,
|
2472 |
+
"loss": 0.7429,
|
2473 |
+
"step": 3520
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.8907955334048325,
|
2477 |
+
"grad_norm": 0.6337852478027344,
|
2478 |
+
"learning_rate": 1.789809319401825e-06,
|
2479 |
+
"loss": 0.743,
|
2480 |
+
"step": 3530
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.8933190334994637,
|
2484 |
+
"grad_norm": 0.6342365145683289,
|
2485 |
+
"learning_rate": 1.7088532100621224e-06,
|
2486 |
+
"loss": 0.7093,
|
2487 |
+
"step": 3540
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.895842533594095,
|
2491 |
+
"grad_norm": 0.6229385137557983,
|
2492 |
+
"learning_rate": 1.629705809886467e-06,
|
2493 |
+
"loss": 0.7111,
|
2494 |
+
"step": 3550
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.8983660336887263,
|
2498 |
+
"grad_norm": 0.5831491947174072,
|
2499 |
+
"learning_rate": 1.5523732651857082e-06,
|
2500 |
+
"loss": 0.7267,
|
2501 |
+
"step": 3560
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.9008895337833576,
|
2505 |
+
"grad_norm": 0.6794403791427612,
|
2506 |
+
"learning_rate": 1.4768615813353398e-06,
|
2507 |
+
"loss": 0.7302,
|
2508 |
+
"step": 3570
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.9034130338779888,
|
2512 |
+
"grad_norm": 0.5871224403381348,
|
2513 |
+
"learning_rate": 1.4031766223091603e-06,
|
2514 |
+
"loss": 0.7284,
|
2515 |
+
"step": 3580
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.90593653397262,
|
2519 |
+
"grad_norm": 0.5899478197097778,
|
2520 |
+
"learning_rate": 1.3313241102239054e-06,
|
2521 |
+
"loss": 0.7055,
|
2522 |
+
"step": 3590
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.9084600340672513,
|
2526 |
+
"grad_norm": 0.625042200088501,
|
2527 |
+
"learning_rate": 1.261309624894863e-06,
|
2528 |
+
"loss": 0.7455,
|
2529 |
+
"step": 3600
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.9109835341618825,
|
2533 |
+
"grad_norm": 0.5997599363327026,
|
2534 |
+
"learning_rate": 1.1931386034025882e-06,
|
2535 |
+
"loss": 0.73,
|
2536 |
+
"step": 3610
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.9135070342565138,
|
2540 |
+
"grad_norm": 0.5365213751792908,
|
2541 |
+
"learning_rate": 1.1268163396706583e-06,
|
2542 |
+
"loss": 0.74,
|
2543 |
+
"step": 3620
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.916030534351145,
|
2547 |
+
"grad_norm": 0.5916723012924194,
|
2548 |
+
"learning_rate": 1.0623479840545874e-06,
|
2549 |
+
"loss": 0.6867,
|
2550 |
+
"step": 3630
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.9185540344457763,
|
2554 |
+
"grad_norm": 0.660201370716095,
|
2555 |
+
"learning_rate": 9.997385429418555e-07,
|
2556 |
+
"loss": 0.7505,
|
2557 |
+
"step": 3640
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.9210775345404075,
|
2561 |
+
"grad_norm": 0.6315280795097351,
|
2562 |
+
"learning_rate": 9.389928783631207e-07,
|
2563 |
+
"loss": 0.7543,
|
2564 |
+
"step": 3650
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.9236010346350388,
|
2568 |
+
"grad_norm": 0.5867049694061279,
|
2569 |
+
"learning_rate": 8.801157076146705e-07,
|
2570 |
+
"loss": 0.7151,
|
2571 |
+
"step": 3660
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.92612453472967,
|
2575 |
+
"grad_norm": 0.6637170910835266,
|
2576 |
+
"learning_rate": 8.231116028920765e-07,
|
2577 |
+
"loss": 0.7189,
|
2578 |
+
"step": 3670
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.9286480348243014,
|
2582 |
+
"grad_norm": 0.5963181853294373,
|
2583 |
+
"learning_rate": 7.679849909351472e-07,
|
2584 |
+
"loss": 0.708,
|
2585 |
+
"step": 3680
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.9311715349189326,
|
2589 |
+
"grad_norm": 0.677011251449585,
|
2590 |
+
"learning_rate": 7.147401526841485e-07,
|
2591 |
+
"loss": 0.7049,
|
2592 |
+
"step": 3690
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.9336950350135638,
|
2596 |
+
"grad_norm": 0.6534477472305298,
|
2597 |
+
"learning_rate": 6.633812229473791e-07,
|
2598 |
+
"loss": 0.7607,
|
2599 |
+
"step": 3700
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.9362185351081951,
|
2603 |
+
"grad_norm": 0.6873798370361328,
|
2604 |
+
"learning_rate": 6.139121900800515e-07,
|
2605 |
+
"loss": 0.7044,
|
2606 |
+
"step": 3710
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.9387420352028263,
|
2610 |
+
"grad_norm": 0.6045345067977905,
|
2611 |
+
"learning_rate": 5.663368956745963e-07,
|
2612 |
+
"loss": 0.7141,
|
2613 |
+
"step": 3720
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.9412655352974576,
|
2617 |
+
"grad_norm": 0.6731101274490356,
|
2618 |
+
"learning_rate": 5.206590342623164e-07,
|
2619 |
+
"loss": 0.7156,
|
2620 |
+
"step": 3730
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.9437890353920888,
|
2624 |
+
"grad_norm": 0.5900946855545044,
|
2625 |
+
"learning_rate": 4.768821530264977e-07,
|
2626 |
+
"loss": 0.7481,
|
2627 |
+
"step": 3740
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.9463125354867201,
|
2631 |
+
"grad_norm": 0.6716229915618896,
|
2632 |
+
"learning_rate": 4.350096515269325e-07,
|
2633 |
+
"loss": 0.7438,
|
2634 |
+
"step": 3750
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.9488360355813513,
|
2638 |
+
"grad_norm": 0.6293070912361145,
|
2639 |
+
"learning_rate": 3.950447814359409e-07,
|
2640 |
+
"loss": 0.7449,
|
2641 |
+
"step": 3760
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.9513595356759826,
|
2645 |
+
"grad_norm": 0.6327414512634277,
|
2646 |
+
"learning_rate": 3.5699064628583745e-07,
|
2647 |
+
"loss": 0.7241,
|
2648 |
+
"step": 3770
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.9538830357706138,
|
2652 |
+
"grad_norm": 0.5867704749107361,
|
2653 |
+
"learning_rate": 3.2085020122793186e-07,
|
2654 |
+
"loss": 0.7247,
|
2655 |
+
"step": 3780
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.956406535865245,
|
2659 |
+
"grad_norm": 0.6275327801704407,
|
2660 |
+
"learning_rate": 2.8662625280304613e-07,
|
2661 |
+
"loss": 0.7166,
|
2662 |
+
"step": 3790
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.9589300359598764,
|
2666 |
+
"grad_norm": 0.634965717792511,
|
2667 |
+
"learning_rate": 2.5432145872355816e-07,
|
2668 |
+
"loss": 0.713,
|
2669 |
+
"step": 3800
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.9614535360545076,
|
2673 |
+
"grad_norm": 0.685463011264801,
|
2674 |
+
"learning_rate": 2.2393832766701706e-07,
|
2675 |
+
"loss": 0.7328,
|
2676 |
+
"step": 3810
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.9639770361491389,
|
2680 |
+
"grad_norm": 0.5693522095680237,
|
2681 |
+
"learning_rate": 1.9547921908133483e-07,
|
2682 |
+
"loss": 0.7333,
|
2683 |
+
"step": 3820
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.9665005362437701,
|
2687 |
+
"grad_norm": 0.6611155271530151,
|
2688 |
+
"learning_rate": 1.689463430015442e-07,
|
2689 |
+
"loss": 0.7102,
|
2690 |
+
"step": 3830
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.9690240363384014,
|
2694 |
+
"grad_norm": 0.6425820589065552,
|
2695 |
+
"learning_rate": 1.443417598781971e-07,
|
2696 |
+
"loss": 0.7294,
|
2697 |
+
"step": 3840
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.9715475364330326,
|
2701 |
+
"grad_norm": 0.66698157787323,
|
2702 |
+
"learning_rate": 1.2166738041733684e-07,
|
2703 |
+
"loss": 0.728,
|
2704 |
+
"step": 3850
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.9740710365276639,
|
2708 |
+
"grad_norm": 0.6152459383010864,
|
2709 |
+
"learning_rate": 1.0092496543212814e-07,
|
2710 |
+
"loss": 0.7201,
|
2711 |
+
"step": 3860
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.9765945366222951,
|
2715 |
+
"grad_norm": 0.613070547580719,
|
2716 |
+
"learning_rate": 8.211612570611926e-08,
|
2717 |
+
"loss": 0.7148,
|
2718 |
+
"step": 3870
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.9791180367169264,
|
2722 |
+
"grad_norm": 0.6403253674507141,
|
2723 |
+
"learning_rate": 6.524232186815305e-08,
|
2724 |
+
"loss": 0.7129,
|
2725 |
+
"step": 3880
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.9816415368115576,
|
2729 |
+
"grad_norm": 0.6211004257202148,
|
2730 |
+
"learning_rate": 5.03048642789411e-08,
|
2731 |
+
"loss": 0.7068,
|
2732 |
+
"step": 3890
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.9841650369061888,
|
2736 |
+
"grad_norm": 0.7897922992706299,
|
2737 |
+
"learning_rate": 3.730491292930072e-08,
|
2738 |
+
"loss": 0.7184,
|
2739 |
+
"step": 3900
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.9866885370008202,
|
2743 |
+
"grad_norm": 0.756610631942749,
|
2744 |
+
"learning_rate": 2.624347735007693e-08,
|
2745 |
+
"loss": 0.738,
|
2746 |
+
"step": 3910
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.9892120370954514,
|
2750 |
+
"grad_norm": 0.6681756973266602,
|
2751 |
+
"learning_rate": 1.7121416533749658e-08,
|
2752 |
+
"loss": 0.7298,
|
2753 |
+
"step": 3920
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.9917355371900827,
|
2757 |
+
"grad_norm": 0.630942702293396,
|
2758 |
+
"learning_rate": 9.939438867723194e-09,
|
2759 |
+
"loss": 0.7322,
|
2760 |
+
"step": 3930
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.9942590372847139,
|
2764 |
+
"grad_norm": 0.6125476360321045,
|
2765 |
+
"learning_rate": 4.6981020793118725e-09,
|
2766 |
+
"loss": 0.7414,
|
2767 |
+
"step": 3940
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.9967825373793452,
|
2771 |
+
"grad_norm": 0.6152609586715698,
|
2772 |
+
"learning_rate": 1.3978131924385906e-09,
|
2773 |
+
"loss": 0.7124,
|
2774 |
+
"step": 3950
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.9993060374739764,
|
2778 |
+
"grad_norm": 0.6308910846710205,
|
2779 |
+
"learning_rate": 3.88284960184393e-11,
|
2780 |
+
"loss": 0.7419,
|
2781 |
+
"step": 3960
|
2782 |
+
}
|
2783 |
+
],
|
2784 |
+
"logging_steps": 10,
|
2785 |
+
"max_steps": 3962,
|
2786 |
+
"num_input_tokens_seen": 0,
|
2787 |
+
"num_train_epochs": 1,
|
2788 |
+
"save_steps": 1000,
|
2789 |
+
"stateful_callbacks": {
|
2790 |
+
"TrainerControl": {
|
2791 |
+
"args": {
|
2792 |
+
"should_epoch_stop": false,
|
2793 |
+
"should_evaluate": false,
|
2794 |
+
"should_log": false,
|
2795 |
+
"should_save": true,
|
2796 |
+
"should_training_stop": true
|
2797 |
+
},
|
2798 |
+
"attributes": {}
|
2799 |
+
}
|
2800 |
+
},
|
2801 |
+
"total_flos": 4.315842275872604e+18,
|
2802 |
+
"train_batch_size": 2,
|
2803 |
+
"trial_name": null,
|
2804 |
+
"trial_params": null
|
2805 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:521f433a3f3ed9e53b6435fbdd695b6a70697bf5603a54f87df385d0426108e2
|
3 |
+
size 7160
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|