--- license: other base_model: nvidia/segformer-b1-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer metrics: - precision model-index: - name: segformer-b1-finetuned-segments-pv_v1_normalized_p100 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/mouadn773/huggingface/runs/olas59o3) # segformer-b1-finetuned-segments-pv_v1_normalized_p100 This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0092 - Mean Iou: 0.8705 - Precision: 0.9201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision | |:-------------:|:-----:|:------:|:---------------:|:--------:|:---------:| | 0.0078 | 1.0 | 3666 | 0.0068 | 0.8054 | 0.9187 | | 0.0029 | 2.0 | 7332 | 0.0058 | 0.8298 | 0.8778 | | 0.002 | 3.0 | 10998 | 0.0058 | 0.8274 | 0.8961 | | 0.0013 | 4.0 | 14664 | 0.0060 | 0.8388 | 0.8774 | | 0.0 | 5.0 | 18330 | 0.0055 | 0.8405 | 0.8901 | | 0.0059 | 6.0 | 21996 | 0.0050 | 0.8547 | 0.9004 | | 0.0048 | 7.0 | 25662 | 0.0060 | 0.8364 | 0.8668 | | 0.0 | 8.0 | 29328 | 0.0063 | 0.8278 | 0.8776 | | 0.0031 | 9.0 | 32994 | 0.0060 | 0.8547 | 0.9188 | | 0.0017 | 10.0 | 36660 | 0.0061 | 0.8489 | 0.9105 | | 0.0029 | 11.0 | 40326 | 0.0058 | 0.8572 | 0.9066 | | 0.0 | 12.0 | 43992 | 0.0059 | 0.8525 | 0.9105 | | 0.0031 | 13.0 | 47658 | 0.0057 | 0.8514 | 0.9035 | | 0.0012 | 14.0 | 51324 | 0.0056 | 0.8567 | 0.9058 | | 0.0042 | 15.0 | 54990 | 0.0058 | 0.8463 | 0.8898 | | 0.0026 | 16.0 | 58656 | 0.0067 | 0.8607 | 0.9196 | | 0.0012 | 17.0 | 62322 | 0.0050 | 0.8632 | 0.9224 | | 0.0031 | 18.0 | 65988 | 0.0066 | 0.8404 | 0.9155 | | 0.0018 | 19.0 | 69654 | 0.0059 | 0.8598 | 0.9115 | | 0.002 | 20.0 | 73320 | 0.0065 | 0.8561 | 0.9210 | | 0.0033 | 21.0 | 76986 | 0.0070 | 0.8580 | 0.9118 | | 0.0014 | 22.0 | 80652 | 0.0066 | 0.8597 | 0.9306 | | 0.0 | 23.0 | 84318 | 0.0066 | 0.8623 | 0.9014 | | 0.0 | 24.0 | 87984 | 0.0062 | 0.8709 | 0.9217 | | 0.0022 | 25.0 | 91650 | 0.0067 | 0.8644 | 0.9204 | | 0.0013 | 26.0 | 95316 | 0.0063 | 0.8680 | 0.9214 | | 0.0015 | 27.0 | 98982 | 0.0073 | 0.8520 | 0.8918 | | 0.0 | 28.0 | 102648 | 0.0071 | 0.8674 | 0.9144 | | 0.0015 | 29.0 | 106314 | 0.0069 | 0.8716 | 0.9261 | | 0.0 | 30.0 | 109980 | 0.0068 | 0.8715 | 0.9246 | | 0.0012 | 31.0 | 113646 | 0.0073 | 0.8682 | 0.9128 | | 0.0009 | 32.0 | 117312 | 0.0071 | 0.8717 | 0.9260 | | 0.0022 | 33.0 | 120978 | 0.0071 | 0.8715 | 0.9172 | | 0.0019 | 34.0 | 124644 | 0.0075 | 0.8674 | 0.9127 | | 0.0 | 35.0 | 128310 | 0.0078 | 0.8660 | 0.9140 | | 0.0009 | 36.0 | 131976 | 0.0079 | 0.8720 | 0.9214 | | 0.0007 | 37.0 | 135642 | 0.0087 | 0.8689 | 0.9206 | | 0.0014 | 38.0 | 139308 | 0.0077 | 0.8697 | 0.9161 | | 0.0 | 39.0 | 142974 | 0.0091 | 0.8682 | 0.9243 | | 0.0025 | 40.0 | 146640 | 0.0091 | 0.8660 | 0.9161 | | 0.0019 | 41.0 | 150306 | 0.0089 | 0.8722 | 0.9190 | | 0.0009 | 42.0 | 153972 | 0.0087 | 0.8727 | 0.9233 | | 0.0017 | 43.0 | 157638 | 0.0091 | 0.8721 | 0.9196 | | 0.0 | 44.0 | 161304 | 0.0093 | 0.8737 | 0.9181 | | 0.0012 | 45.0 | 164970 | 0.0093 | 0.8727 | 0.9237 | | 0.0 | 46.0 | 168636 | 0.0094 | 0.8724 | 0.9230 | | 0.0005 | 47.0 | 172302 | 0.0102 | 0.8675 | 0.9137 | | 0.0 | 48.0 | 175968 | 0.0094 | 0.8631 | 0.9066 | | 0.0009 | 49.0 | 179634 | 0.0103 | 0.8700 | 0.9165 | | 0.0008 | 50.0 | 183300 | 0.0092 | 0.8705 | 0.9201 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1