update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- preprocessed1024_config
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: convnext-mlo-512-breat_composition
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: preprocessed1024_config
|
17 |
+
type: preprocessed1024_config
|
18 |
+
args: default
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value:
|
23 |
+
accuracy: 0.5665829145728644
|
24 |
+
- name: F1
|
25 |
+
type: f1
|
26 |
+
value:
|
27 |
+
f1: 0.5549950963329491
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# convnext-mlo-512-breat_composition
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the preprocessed1024_config dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 1.1801
|
38 |
+
- Accuracy: {'accuracy': 0.5665829145728644}
|
39 |
+
- F1: {'f1': 0.5549950963329491}
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 5e-05
|
59 |
+
- train_batch_size: 8
|
60 |
+
- eval_batch_size: 8
|
61 |
+
- seed: 42
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 10
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------:|:---------------------------:|
|
70 |
+
| 1.3412 | 1.0 | 796 | 1.1931 | {'accuracy': 0.4547738693467337} | {'f1': 0.31154642522501674} |
|
71 |
+
| 1.1149 | 2.0 | 1592 | 1.0845 | {'accuracy': 0.4886934673366834} | {'f1': 0.40829339044510005} |
|
72 |
+
| 1.0531 | 3.0 | 2388 | 1.1650 | {'accuracy': 0.48304020100502515} | {'f1': 0.38992060973001436} |
|
73 |
+
| 0.917 | 4.0 | 3184 | 0.9950 | {'accuracy': 0.5452261306532663} | {'f1': 0.50281030200465} |
|
74 |
+
| 0.8633 | 5.0 | 3980 | 1.0152 | {'accuracy': 0.5552763819095478} | {'f1': 0.511332789082197} |
|
75 |
+
| 0.7747 | 6.0 | 4776 | 1.0201 | {'accuracy': 0.5703517587939698} | {'f1': 0.523154780871296} |
|
76 |
+
| 0.7133 | 7.0 | 5572 | 1.0345 | {'accuracy': 0.5640703517587939} | {'f1': 0.5198008328503952} |
|
77 |
+
| 0.659 | 8.0 | 6368 | 1.0702 | {'accuracy': 0.5785175879396985} | {'f1': 0.5460580312777853} |
|
78 |
+
| 0.5943 | 9.0 | 7164 | 1.1634 | {'accuracy': 0.5734924623115578} | {'f1': 0.5501266468657362} |
|
79 |
+
| 0.5699 | 10.0 | 7960 | 1.1801 | {'accuracy': 0.5665829145728644} | {'f1': 0.5549950963329491} |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.20.1
|
85 |
+
- Pytorch 1.12.0
|
86 |
+
- Datasets 2.1.0
|
87 |
+
- Tokenizers 0.12.1
|