|
{"current_steps": 10, "total_steps": 1023, "loss": 0.7983, "learning_rate": 5e-06, "epoch": 0.029261155815654718, "percentage": 0.98, "elapsed_time": "0:08:48", "remaining_time": "14:51:30"} |
|
{"current_steps": 20, "total_steps": 1023, "loss": 0.7379, "learning_rate": 5e-06, "epoch": 0.058522311631309436, "percentage": 1.96, "elapsed_time": "0:17:32", "remaining_time": "14:40:07"} |
|
{"current_steps": 30, "total_steps": 1023, "loss": 0.7063, "learning_rate": 5e-06, "epoch": 0.08778346744696415, "percentage": 2.93, "elapsed_time": "0:26:17", "remaining_time": "14:30:16"} |
|
{"current_steps": 40, "total_steps": 1023, "loss": 0.696, "learning_rate": 5e-06, "epoch": 0.11704462326261887, "percentage": 3.91, "elapsed_time": "0:34:59", "remaining_time": "14:19:57"} |
|
{"current_steps": 50, "total_steps": 1023, "loss": 0.6866, "learning_rate": 5e-06, "epoch": 0.14630577907827358, "percentage": 4.89, "elapsed_time": "0:43:43", "remaining_time": "14:10:45"} |
|
{"current_steps": 60, "total_steps": 1023, "loss": 0.6763, "learning_rate": 5e-06, "epoch": 0.1755669348939283, "percentage": 5.87, "elapsed_time": "0:52:25", "remaining_time": "14:01:25"} |
|
{"current_steps": 70, "total_steps": 1023, "loss": 0.6699, "learning_rate": 5e-06, "epoch": 0.20482809070958302, "percentage": 6.84, "elapsed_time": "1:01:08", "remaining_time": "13:52:21"} |
|
{"current_steps": 80, "total_steps": 1023, "loss": 0.6646, "learning_rate": 5e-06, "epoch": 0.23408924652523774, "percentage": 7.82, "elapsed_time": "1:09:51", "remaining_time": "13:43:30"} |
|
{"current_steps": 90, "total_steps": 1023, "loss": 0.6619, "learning_rate": 5e-06, "epoch": 0.26335040234089246, "percentage": 8.8, "elapsed_time": "1:18:35", "remaining_time": "13:34:44"} |
|
{"current_steps": 100, "total_steps": 1023, "loss": 0.6543, "learning_rate": 5e-06, "epoch": 0.29261155815654716, "percentage": 9.78, "elapsed_time": "1:27:17", "remaining_time": "13:25:42"} |
|
{"current_steps": 110, "total_steps": 1023, "loss": 0.6631, "learning_rate": 5e-06, "epoch": 0.3218727139722019, "percentage": 10.75, "elapsed_time": "1:35:59", "remaining_time": "13:16:46"} |
|
{"current_steps": 120, "total_steps": 1023, "loss": 0.6681, "learning_rate": 5e-06, "epoch": 0.3511338697878566, "percentage": 11.73, "elapsed_time": "1:44:42", "remaining_time": "13:07:53"} |
|
{"current_steps": 130, "total_steps": 1023, "loss": 0.6519, "learning_rate": 5e-06, "epoch": 0.38039502560351135, "percentage": 12.71, "elapsed_time": "1:53:24", "remaining_time": "12:59:04"} |
|
{"current_steps": 140, "total_steps": 1023, "loss": 0.6526, "learning_rate": 5e-06, "epoch": 0.40965618141916604, "percentage": 13.69, "elapsed_time": "2:02:06", "remaining_time": "12:50:06"} |
|
{"current_steps": 150, "total_steps": 1023, "loss": 0.648, "learning_rate": 5e-06, "epoch": 0.4389173372348208, "percentage": 14.66, "elapsed_time": "2:10:49", "remaining_time": "12:41:22"} |
|
{"current_steps": 160, "total_steps": 1023, "loss": 0.6499, "learning_rate": 5e-06, "epoch": 0.4681784930504755, "percentage": 15.64, "elapsed_time": "2:19:31", "remaining_time": "12:32:36"} |
|
{"current_steps": 170, "total_steps": 1023, "loss": 0.6549, "learning_rate": 5e-06, "epoch": 0.49743964886613024, "percentage": 16.62, "elapsed_time": "2:28:15", "remaining_time": "12:23:55"} |
|
{"current_steps": 180, "total_steps": 1023, "loss": 0.6546, "learning_rate": 5e-06, "epoch": 0.5267008046817849, "percentage": 17.6, "elapsed_time": "2:36:59", "remaining_time": "12:15:13"} |
|
{"current_steps": 190, "total_steps": 1023, "loss": 0.6431, "learning_rate": 5e-06, "epoch": 0.5559619604974396, "percentage": 18.57, "elapsed_time": "2:45:42", "remaining_time": "12:06:29"} |
|
{"current_steps": 200, "total_steps": 1023, "loss": 0.6443, "learning_rate": 5e-06, "epoch": 0.5852231163130943, "percentage": 19.55, "elapsed_time": "2:54:25", "remaining_time": "11:57:44"} |
|
{"current_steps": 210, "total_steps": 1023, "loss": 0.6509, "learning_rate": 5e-06, "epoch": 0.6144842721287491, "percentage": 20.53, "elapsed_time": "3:03:08", "remaining_time": "11:49:01"} |
|
{"current_steps": 220, "total_steps": 1023, "loss": 0.6389, "learning_rate": 5e-06, "epoch": 0.6437454279444038, "percentage": 21.51, "elapsed_time": "3:11:50", "remaining_time": "11:40:12"} |
|
{"current_steps": 230, "total_steps": 1023, "loss": 0.6388, "learning_rate": 5e-06, "epoch": 0.6730065837600585, "percentage": 22.48, "elapsed_time": "3:20:32", "remaining_time": "11:31:25"} |
|
{"current_steps": 240, "total_steps": 1023, "loss": 0.6456, "learning_rate": 5e-06, "epoch": 0.7022677395757132, "percentage": 23.46, "elapsed_time": "3:29:16", "remaining_time": "11:22:44"} |
|
{"current_steps": 250, "total_steps": 1023, "loss": 0.644, "learning_rate": 5e-06, "epoch": 0.731528895391368, "percentage": 24.44, "elapsed_time": "3:37:59", "remaining_time": "11:14:02"} |
|
{"current_steps": 260, "total_steps": 1023, "loss": 0.6467, "learning_rate": 5e-06, "epoch": 0.7607900512070227, "percentage": 25.42, "elapsed_time": "3:46:43", "remaining_time": "11:05:20"} |
|
{"current_steps": 270, "total_steps": 1023, "loss": 0.6489, "learning_rate": 5e-06, "epoch": 0.7900512070226774, "percentage": 26.39, "elapsed_time": "3:55:26", "remaining_time": "10:56:38"} |
|
{"current_steps": 280, "total_steps": 1023, "loss": 0.6477, "learning_rate": 5e-06, "epoch": 0.8193123628383321, "percentage": 27.37, "elapsed_time": "4:04:09", "remaining_time": "10:47:53"} |
|
{"current_steps": 290, "total_steps": 1023, "loss": 0.64, "learning_rate": 5e-06, "epoch": 0.8485735186539868, "percentage": 28.35, "elapsed_time": "4:12:51", "remaining_time": "10:39:06"} |
|
{"current_steps": 300, "total_steps": 1023, "loss": 0.6318, "learning_rate": 5e-06, "epoch": 0.8778346744696416, "percentage": 29.33, "elapsed_time": "4:21:33", "remaining_time": "10:30:22"} |
|
{"current_steps": 310, "total_steps": 1023, "loss": 0.645, "learning_rate": 5e-06, "epoch": 0.9070958302852963, "percentage": 30.3, "elapsed_time": "4:30:17", "remaining_time": "10:21:40"} |
|
{"current_steps": 320, "total_steps": 1023, "loss": 0.6369, "learning_rate": 5e-06, "epoch": 0.936356986100951, "percentage": 31.28, "elapsed_time": "4:39:01", "remaining_time": "10:12:58"} |
|
{"current_steps": 330, "total_steps": 1023, "loss": 0.6402, "learning_rate": 5e-06, "epoch": 0.9656181419166057, "percentage": 32.26, "elapsed_time": "4:47:44", "remaining_time": "10:04:15"} |
|
{"current_steps": 340, "total_steps": 1023, "loss": 0.6362, "learning_rate": 5e-06, "epoch": 0.9948792977322605, "percentage": 33.24, "elapsed_time": "4:56:28", "remaining_time": "9:55:33"} |
|
{"current_steps": 341, "total_steps": 1023, "eval_loss": 0.6406816840171814, "epoch": 0.9978054133138259, "percentage": 33.33, "elapsed_time": "5:03:22", "remaining_time": "10:06:45"} |
|
{"current_steps": 350, "total_steps": 1023, "loss": 0.6514, "learning_rate": 5e-06, "epoch": 1.025237746891002, "percentage": 34.21, "elapsed_time": "5:11:58", "remaining_time": "9:59:53"} |
|
{"current_steps": 360, "total_steps": 1023, "loss": 0.6056, "learning_rate": 5e-06, "epoch": 1.054498902706657, "percentage": 35.19, "elapsed_time": "5:20:42", "remaining_time": "9:50:38"} |
|
{"current_steps": 370, "total_steps": 1023, "loss": 0.6089, "learning_rate": 5e-06, "epoch": 1.0837600585223117, "percentage": 36.17, "elapsed_time": "5:29:26", "remaining_time": "9:41:24"} |
|
{"current_steps": 380, "total_steps": 1023, "loss": 0.6064, "learning_rate": 5e-06, "epoch": 1.1130212143379663, "percentage": 37.15, "elapsed_time": "5:38:10", "remaining_time": "9:32:14"} |
|
{"current_steps": 390, "total_steps": 1023, "loss": 0.6117, "learning_rate": 5e-06, "epoch": 1.142282370153621, "percentage": 38.12, "elapsed_time": "5:46:55", "remaining_time": "9:23:05"} |
|
{"current_steps": 400, "total_steps": 1023, "loss": 0.6132, "learning_rate": 5e-06, "epoch": 1.1715435259692757, "percentage": 39.1, "elapsed_time": "5:55:38", "remaining_time": "9:13:55"} |
|
{"current_steps": 410, "total_steps": 1023, "loss": 0.6128, "learning_rate": 5e-06, "epoch": 1.2008046817849305, "percentage": 40.08, "elapsed_time": "6:04:23", "remaining_time": "9:04:47"} |
|
{"current_steps": 420, "total_steps": 1023, "loss": 0.601, "learning_rate": 5e-06, "epoch": 1.2300658376005853, "percentage": 41.06, "elapsed_time": "6:13:05", "remaining_time": "8:55:39"} |
|
{"current_steps": 430, "total_steps": 1023, "loss": 0.6111, "learning_rate": 5e-06, "epoch": 1.2593269934162399, "percentage": 42.03, "elapsed_time": "6:21:49", "remaining_time": "8:46:33"} |
|
{"current_steps": 440, "total_steps": 1023, "loss": 0.6037, "learning_rate": 5e-06, "epoch": 1.2885881492318947, "percentage": 43.01, "elapsed_time": "6:30:33", "remaining_time": "8:37:29"} |
|
{"current_steps": 450, "total_steps": 1023, "loss": 0.6075, "learning_rate": 5e-06, "epoch": 1.3178493050475493, "percentage": 43.99, "elapsed_time": "6:39:18", "remaining_time": "8:28:26"} |
|
{"current_steps": 460, "total_steps": 1023, "loss": 0.6052, "learning_rate": 5e-06, "epoch": 1.347110460863204, "percentage": 44.97, "elapsed_time": "6:48:01", "remaining_time": "8:19:23"} |
|
{"current_steps": 470, "total_steps": 1023, "loss": 0.6025, "learning_rate": 5e-06, "epoch": 1.3763716166788589, "percentage": 45.94, "elapsed_time": "6:56:44", "remaining_time": "8:10:20"} |
|
{"current_steps": 480, "total_steps": 1023, "loss": 0.6034, "learning_rate": 5e-06, "epoch": 1.4056327724945135, "percentage": 46.92, "elapsed_time": "7:05:28", "remaining_time": "8:01:19"} |
|
{"current_steps": 490, "total_steps": 1023, "loss": 0.6097, "learning_rate": 5e-06, "epoch": 1.4348939283101683, "percentage": 47.9, "elapsed_time": "7:14:11", "remaining_time": "7:52:17"} |
|
{"current_steps": 500, "total_steps": 1023, "loss": 0.5981, "learning_rate": 5e-06, "epoch": 1.464155084125823, "percentage": 48.88, "elapsed_time": "7:22:55", "remaining_time": "7:43:17"} |
|
{"current_steps": 510, "total_steps": 1023, "loss": 0.6061, "learning_rate": 5e-06, "epoch": 1.4934162399414777, "percentage": 49.85, "elapsed_time": "7:31:36", "remaining_time": "7:34:16"} |
|
{"current_steps": 520, "total_steps": 1023, "loss": 0.6084, "learning_rate": 5e-06, "epoch": 1.5226773957571325, "percentage": 50.83, "elapsed_time": "7:40:20", "remaining_time": "7:25:17"} |
|
{"current_steps": 530, "total_steps": 1023, "loss": 0.6071, "learning_rate": 5e-06, "epoch": 1.5519385515727873, "percentage": 51.81, "elapsed_time": "7:49:04", "remaining_time": "7:16:19"} |
|
{"current_steps": 540, "total_steps": 1023, "loss": 0.6136, "learning_rate": 5e-06, "epoch": 1.5811997073884418, "percentage": 52.79, "elapsed_time": "7:57:47", "remaining_time": "7:07:21"} |
|
{"current_steps": 550, "total_steps": 1023, "loss": 0.6047, "learning_rate": 5e-06, "epoch": 1.6104608632040964, "percentage": 53.76, "elapsed_time": "8:06:30", "remaining_time": "6:58:24"} |
|
{"current_steps": 560, "total_steps": 1023, "loss": 0.6064, "learning_rate": 5e-06, "epoch": 1.6397220190197512, "percentage": 54.74, "elapsed_time": "8:15:13", "remaining_time": "6:49:26"} |
|
{"current_steps": 570, "total_steps": 1023, "loss": 0.597, "learning_rate": 5e-06, "epoch": 1.668983174835406, "percentage": 55.72, "elapsed_time": "8:23:55", "remaining_time": "6:40:29"} |
|
{"current_steps": 580, "total_steps": 1023, "loss": 0.6064, "learning_rate": 5e-06, "epoch": 1.6982443306510606, "percentage": 56.7, "elapsed_time": "8:32:39", "remaining_time": "6:31:33"} |
|
{"current_steps": 590, "total_steps": 1023, "loss": 0.6066, "learning_rate": 5e-06, "epoch": 1.7275054864667154, "percentage": 57.67, "elapsed_time": "8:41:22", "remaining_time": "6:22:37"} |
|
{"current_steps": 600, "total_steps": 1023, "loss": 0.6034, "learning_rate": 5e-06, "epoch": 1.7567666422823702, "percentage": 58.65, "elapsed_time": "8:50:04", "remaining_time": "6:13:41"} |
|
{"current_steps": 610, "total_steps": 1023, "loss": 0.6059, "learning_rate": 5e-06, "epoch": 1.7860277980980248, "percentage": 59.63, "elapsed_time": "8:58:46", "remaining_time": "6:04:46"} |
|
{"current_steps": 620, "total_steps": 1023, "loss": 0.6063, "learning_rate": 5e-06, "epoch": 1.8152889539136796, "percentage": 60.61, "elapsed_time": "9:07:30", "remaining_time": "5:55:52"} |
|
{"current_steps": 630, "total_steps": 1023, "loss": 0.6054, "learning_rate": 5e-06, "epoch": 1.8445501097293344, "percentage": 61.58, "elapsed_time": "9:16:13", "remaining_time": "5:46:58"} |
|
{"current_steps": 640, "total_steps": 1023, "loss": 0.6002, "learning_rate": 5e-06, "epoch": 1.873811265544989, "percentage": 62.56, "elapsed_time": "9:24:57", "remaining_time": "5:38:05"} |
|
{"current_steps": 650, "total_steps": 1023, "loss": 0.6059, "learning_rate": 5e-06, "epoch": 1.9030724213606436, "percentage": 63.54, "elapsed_time": "9:33:41", "remaining_time": "5:29:12"} |
|
{"current_steps": 660, "total_steps": 1023, "loss": 0.6064, "learning_rate": 5e-06, "epoch": 1.9323335771762986, "percentage": 64.52, "elapsed_time": "9:42:23", "remaining_time": "5:20:19"} |
|
{"current_steps": 670, "total_steps": 1023, "loss": 0.5953, "learning_rate": 5e-06, "epoch": 1.9615947329919532, "percentage": 65.49, "elapsed_time": "9:51:05", "remaining_time": "5:11:25"} |
|
{"current_steps": 680, "total_steps": 1023, "loss": 0.6098, "learning_rate": 5e-06, "epoch": 1.9908558888076078, "percentage": 66.47, "elapsed_time": "9:59:49", "remaining_time": "5:02:33"} |
|
{"current_steps": 682, "total_steps": 1023, "eval_loss": 0.6332319378852844, "epoch": 1.9967081199707388, "percentage": 66.67, "elapsed_time": "10:07:54", "remaining_time": "5:03:57"} |
|
|