--- library_name: transformers license: apache-2.0 base_model: bespokelabs/Bespoke-Stratos-7B tags: - llama-factory - full - trl - dpo - llama-factory - generated_from_trainer model-index: - name: dpo_from_multiple_samples_shortest_numina_aime results: [] --- # dpo_from_multiple_samples_shortest_numina_aime This model is a fine-tuned version of [bespokelabs/Bespoke-Stratos-7B](https://huggingface.co/bespokelabs/Bespoke-Stratos-7B) on the mlfoundations-dev/dpo_from_multiple_samples_shortest_numina_aime dataset. It achieves the following results on the evaluation set: - Loss: 4.5934 - Rewards/chosen: -7.6229 - Rewards/rejected: -8.1168 - Rewards/accuracies: 0.5859 - Rewards/margins: 0.4940 - Logps/chosen: -0.7623 - Logps/rejected: -0.8117 - Logits/chosen: -0.6184 - Logits/rejected: -0.4483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/chosen | Logps/rejected | Logits/chosen | Logits/rejected | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:------------:|:--------------:|:-------------:|:---------------:| | 4.3711 | 0.96 | 18 | 4.5934 | -7.6229 | -8.1168 | 0.5859 | 0.4940 | -0.7623 | -0.8117 | -0.6184 | -0.4483 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.0 - Datasets 3.1.0 - Tokenizers 0.20.3