Ngit commited on
Commit
b8961be
·
verified ·
1 Parent(s): 16573cd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -11
README.md CHANGED
@@ -6,8 +6,21 @@ language:
6
  # Text Classification GoEmotions
7
 
8
  This is a quantized onnx model and is a fined-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large) on the on the [Jigsaw 1st Kaggle competition](https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge) dataset using [unitary/toxic-bert](https://huggingface.co/unitary/toxic-bert) as teacher model.
 
9
 
10
- # Load the Model
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  ```py
13
  import os
@@ -18,9 +31,7 @@ from tokenizers import Tokenizer
18
  from onnxruntime import InferenceSession
19
 
20
 
21
- # !git clone https://huggingface.co/Ngit/MiniLM-L6-toxic-all-labels-onnx
22
-
23
- model_name = "Ngit/MiniLM-L6-toxic-all-labels-onnx"
24
  tokenizer = Tokenizer.from_pretrained(model_name)
25
  tokenizer.enable_padding(
26
  pad_token="<pad>",
@@ -31,9 +42,9 @@ batch_size = 16
31
 
32
  texts = ["This is pure trash",]
33
  outputs = []
34
- model = InferenceSession("MiniLM-L6-toxic-all-labels-onnx/model_optimized_quantized.onnx", providers=['CUDAExecutionProvider'])
35
 
36
- with open(os.path.join("MiniLM-L6-toxic-all-labels-onnx", "config.json"), "r") as f:
37
  config = json.load(f)
38
 
39
  output_names = [output.name for output in model.get_outputs()]
@@ -43,13 +54,13 @@ for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1):
43
  encodings = tokenizer.encode_batch(list(subtexts))
44
  inputs = {
45
  "input_ids": np.vstack(
46
- [encoding.ids for encoding in encodings], dtype=np.int64
47
  ),
48
  "attention_mask": np.vstack(
49
- [encoding.attention_mask for encoding in encodings], dtype=np.int64
50
  ),
51
  "token_type_ids": np.vstack(
52
- [encoding.type_ids for encoding in encodings], dtype=np.int64
53
  ),
54
  }
55
 
@@ -77,7 +88,15 @@ for item in scores:
77
  scores.append(float(s))
78
  results.append({"labels": labels, "scores": scores})
79
 
80
- results
 
 
 
 
 
 
 
 
81
  ```
82
 
83
  # Training hyperparameters
@@ -96,7 +115,7 @@ The following hyperparameters were used during training:
96
 
97
  | Teacher (params) | Student (params) | Set (metric) | Score (teacher) | Score (student) |
98
  |--------------------|-------------|----------|--------| --------|
99
- | unitary/toxic-bert (110M) | MiniLMv2-L6-H384-goemotions-v2-onnx (23M) | Test (ROC_AUC) | 0.98636 | 0.98130 |
100
 
101
  # Deployment
102
 
 
6
  # Text Classification GoEmotions
7
 
8
  This is a quantized onnx model and is a fined-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large) on the on the [Jigsaw 1st Kaggle competition](https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge) dataset using [unitary/toxic-bert](https://huggingface.co/unitary/toxic-bert) as teacher model.
9
+ The original model can be found [here](https://huggingface.co/minuva/MiniLMv2-toxic-jijgsaw)
10
 
11
+
12
+ # Usage
13
+
14
+ ## Installation
15
+
16
+ ```bash
17
+ pip install tokenizers
18
+ pip install onnxruntime
19
+ git clone https://huggingface.co/minuva/MiniLMv2-toxic-jijgsaw-onnx
20
+ ```
21
+
22
+
23
+ ## Load the Model
24
 
25
  ```py
26
  import os
 
31
  from onnxruntime import InferenceSession
32
 
33
 
34
+ model_name = "minuva/MiniLMv2-toxic-jijgsaw-onnx"
 
 
35
  tokenizer = Tokenizer.from_pretrained(model_name)
36
  tokenizer.enable_padding(
37
  pad_token="<pad>",
 
42
 
43
  texts = ["This is pure trash",]
44
  outputs = []
45
+ model = InferenceSession("MiniLMv2-toxic-jijgsaw-onnx/model_optimized_quantized.onnx", providers=['CUDAExecutionProvider'])
46
 
47
+ with open(os.path.join("MiniLMv2-toxic-jijgsaw-onnx", "config.json"), "r") as f:
48
  config = json.load(f)
49
 
50
  output_names = [output.name for output in model.get_outputs()]
 
54
  encodings = tokenizer.encode_batch(list(subtexts))
55
  inputs = {
56
  "input_ids": np.vstack(
57
+ [encoding.ids for encoding in encodings],
58
  ),
59
  "attention_mask": np.vstack(
60
+ [encoding.attention_mask for encoding in encodings],
61
  ),
62
  "token_type_ids": np.vstack(
63
+ [encoding.type_ids for encoding in encodings],
64
  ),
65
  }
66
 
 
88
  scores.append(float(s))
89
  results.append({"labels": labels, "scores": scores})
90
 
91
+ res = []
92
+
93
+ for result in results:
94
+ joined = list(zip(result['labels'], result['scores']))
95
+ max_score = max(joined, key=lambda x: x[1])
96
+ res.append(max_score)
97
+
98
+ res
99
+ # [('toxic', 0.736885666847229)]
100
  ```
101
 
102
  # Training hyperparameters
 
115
 
116
  | Teacher (params) | Student (params) | Set (metric) | Score (teacher) | Score (student) |
117
  |--------------------|-------------|----------|--------| --------|
118
+ | unitary/toxic-bert (110M) | MiniLMv2-toxic-jijgsaw-onnx (23M) | Test (ROC_AUC) | 0.98636 | 0.98130 |
119
 
120
  # Deployment
121