--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 아기 무릎보호대 유아 돌 성장판 패드 스마일 무릎보호대 베이지 출산/육아 > 매트/안전용품 > 무릎보호대 - text: 함소아화장품 포포패치 아이편해 유칼립투스 오렌지 X 6개 출산/육아 > 매트/안전용품 > 모기밴드/퇴치용품 - text: 돗투돗 아기 무릎보호대 롤리팝 이중 걸음마 보조기 성장판 돌 유아 아이보리 베이비바니 출산/육아 > 매트/안전용품 > 무릎보호대 - text: 콘센트 안전커버 마개 안전캡 아기 멀티탭 안전덮개 실리콘 보호캡 출산/육아 > 매트/안전용품 > 콘센트안전커버 - text: 다이소 원터치 콘센트 안전 커버 4P 56873 출산/육아 > 매트/안전용품 > 콘센트안전커버 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 10 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2.0 | | | 9.0 | | | 4.0 | | | 1.0 | | | 7.0 | | | 5.0 | | | 6.0 | | | 0.0 | | | 3.0 | | | 8.0 | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bc3") # Run inference preds = model("다이소 원터치 콘센트 안전 커버 4P 56873 출산/육아 > 매트/안전용품 > 콘센트안전커버") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 9 | 14.4541 | 34 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 16 | | 1.0 | 20 | | 2.0 | 20 | | 3.0 | 20 | | 4.0 | 20 | | 5.0 | 20 | | 6.0 | 20 | | 7.0 | 20 | | 8.0 | 20 | | 9.0 | 20 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0256 | 1 | 0.4765 | - | | 1.2821 | 50 | 0.4502 | - | | 2.5641 | 100 | 0.204 | - | | 3.8462 | 150 | 0.061 | - | | 5.1282 | 200 | 0.0263 | - | | 6.4103 | 250 | 0.0101 | - | | 7.6923 | 300 | 0.0003 | - | | 8.9744 | 350 | 0.0001 | - | | 10.2564 | 400 | 0.0001 | - | | 11.5385 | 450 | 0.0001 | - | | 12.8205 | 500 | 0.0001 | - | | 14.1026 | 550 | 0.0001 | - | | 15.3846 | 600 | 0.0 | - | | 16.6667 | 650 | 0.0 | - | | 17.9487 | 700 | 0.0 | - | | 19.2308 | 750 | 0.0 | - | | 20.5128 | 800 | 0.0 | - | | 21.7949 | 850 | 0.0 | - | | 23.0769 | 900 | 0.0 | - | | 24.3590 | 950 | 0.0 | - | | 25.6410 | 1000 | 0.0 | - | | 26.9231 | 1050 | 0.0 | - | | 28.2051 | 1100 | 0.0 | - | | 29.4872 | 1150 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```