--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[즉시15%+중복20%] 예꼬맘 어린이 실크 칫솔 0.07mm 3개 예꼬맘실크칫솔화이트 1단계_예꼬맘실크칫솔핑크 2단계_예꼬맘실크칫솔옐로우 1단계 출산/육아 > 유아세제 > 유아세탁비누' - text: 2023 에브리케어 블랙프라이데이 12. 주방세제 500g 출산/육아 > 유아세제 > 유아세탁세제 - text: 마이비 피부에순한 유아섬유유연제 (리필 1600ml) 출산/육아 > 유아세제 > 유아세탁비누 - text: 베르블랑 중성 아기세제 1L X 3개 (프리미엄 가루세제 구연산 1kg) 머스크향[VB-LM3]_프리미엄 가루세제 구연산 1kg[VB-CA1] 출산/육아 > 유아세제 > 유아세탁세제 - text: 비브라이트 어린이 LED 타이머 유아칫솔 양치컵홀더3P세트 핑크냐옹 출산/육아 > 유아세제 > 유아세탁비누 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 5 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 4.0 | | | 2.0 | | | 3.0 | | | 0.0 | | | 1.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bc23") # Run inference preds = model("마이비 피부에순한 유아섬유유연제 (리필 1600ml) 출산/육아 > 유아세제 > 유아세탁비누") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 8 | 15.3086 | 31 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 70 | | 1.0 | 70 | | 2.0 | 70 | | 3.0 | 70 | | 4.0 | 70 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0145 | 1 | 0.4811 | - | | 0.7246 | 50 | 0.4993 | - | | 1.4493 | 100 | 0.4843 | - | | 2.1739 | 150 | 0.276 | - | | 2.8986 | 200 | 0.0128 | - | | 3.6232 | 250 | 0.0 | - | | 4.3478 | 300 | 0.0 | - | | 5.0725 | 350 | 0.0 | - | | 5.7971 | 400 | 0.0 | - | | 6.5217 | 450 | 0.0 | - | | 7.2464 | 500 | 0.0 | - | | 7.9710 | 550 | 0.0 | - | | 8.6957 | 600 | 0.0 | - | | 9.4203 | 650 | 0.0 | - | | 10.1449 | 700 | 0.0 | - | | 10.8696 | 750 | 0.0 | - | | 11.5942 | 800 | 0.0 | - | | 12.3188 | 850 | 0.0 | - | | 13.0435 | 900 | 0.0 | - | | 13.7681 | 950 | 0.0 | - | | 14.4928 | 1000 | 0.0 | - | | 15.2174 | 1050 | 0.0 | - | | 15.9420 | 1100 | 0.0 | - | | 16.6667 | 1150 | 0.0 | - | | 17.3913 | 1200 | 0.0 | - | | 18.1159 | 1250 | 0.0 | - | | 18.8406 | 1300 | 0.0 | - | | 19.5652 | 1350 | 0.0 | - | | 20.2899 | 1400 | 0.0 | - | | 21.0145 | 1450 | 0.0 | - | | 21.7391 | 1500 | 0.0 | - | | 22.4638 | 1550 | 0.0 | - | | 23.1884 | 1600 | 0.0 | - | | 23.9130 | 1650 | 0.0 | - | | 24.6377 | 1700 | 0.0 | - | | 25.3623 | 1750 | 0.0 | - | | 26.0870 | 1800 | 0.0 | - | | 26.8116 | 1850 | 0.0 | - | | 27.5362 | 1900 | 0.0 | - | | 28.2609 | 1950 | 0.0 | - | | 28.9855 | 2000 | 0.0 | - | | 29.7101 | 2050 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```