File size: 12,136 Bytes
ae8810f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[즉시15%+중복20%] 예꼬맘 어린이 실크 칫솔 0.07mm 3개 예꼬맘실크칫솔화이트 1단계_예꼬맘실크칫솔핑크 2단계_예꼬맘실크칫솔옐로우
1단계 출산/육아 > 유아세제 > 유아세탁비누'
- text: 2023 에브리케어 블랙프라이데이 12. 주방세제 500g 출산/육아 > 유아세제 > 유아세탁세제
- text: 마이비 피부에순한 유아섬유유연제 (리필 1600ml) 출산/육아 > 유아세제 > 유아세탁비누
- text: 베르블랑 중성 아기세제 1L X 3개 (프리미엄 가루세제 구연산 1kg) 머스크향[VB-LM3]_프리미엄 가루세제 구연산 1kg[VB-CA1]
출산/육아 > 유아세제 > 유아세탁세제
- text: 비브라이트 어린이 LED 타이머 유아칫솔 양치컵홀더3P세트 핑크냐옹 출산/육아 > 유아세제 > 유아세탁비누
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.0 | <ul><li>'비앤비 섬유유연제 베르가못 캡리필 1800ml X 6개 출산/육아 > 유아세제 > 혼합세트'</li><li>'베비언스 아기세제 핑크퐁 베이비 아기섬유유연제 유아세탁세제 유아세제 섬유유연제 출산/육아 > 유아세제 > 혼합세트'</li><li>'레드루트 유아 아기 세탁세제1L+유연제1L 향 선택 머스크플로랄_바닐라코튼 출산/육아 > 유아세제 > 혼합세트'</li></ul> |
| 2.0 | <ul><li>'생활용품세탁세재욕실청소 베르블랑 유아 섬유 유연제 그린플로럴향 1000ml, 1개 샹활용품욕실청소세탁세재 생활용품욕실청소세탁세재 생활용품 1000ml × 3개 출산/육아 > 유아세제 > 유아유연제'</li><li>'레드루트 건조기시트 섬유유연제 50매 향선택 건조기시트50매_스위트 출산/육아 > 유아세제 > 유아유연제'</li><li>'비앤비 유아 아기 신생아 섬유유연제 1800ml 3팩 리필 베이비 유연제 액상형 섬유린스 세제/유연제_09.유연제베르가못1800ml리필×4 출산/육아 > 유아세제 > 유아유연제'</li></ul> |
| 3.0 | <ul><li>'마더케이 디아 산소계 표백제 1kg (무향) 출산/육아 > 유아세제 > 유아표백제/얼룩제거제'</li><li>'비앤비 얼룩제거제 500ml 옷얼룩제거 유아옷 얼룩제거 천연성분 함유 젖병세정제_거품 450ml 용기 출산/육아 > 유아세제 > 유아표백제/얼룩제거제'</li><li>'마이비 얼룩제거제 330ml + 리필 300ml x 3개 출산/육아 > 유아세제 > 유아표백제/얼룩제거제'</li></ul> |
| 0.0 | <ul><li>'아이앤어스 독일더마 프리미엄 캡슐형 세탁세제 30개입 x4팩 아이앤어스 독일더마 프리미엄 캡슐형 세탁세제 출산/육아 > 유아세제 > 유아세탁비누'</li><li>'러블리앙즈 유아마스크 30매 어린이 3D 새부리형 초소형 소형 4 8세_M9 왕관곰 4 8세 출산/육아 > 유아세제 > 유아세탁비누'</li><li>'네이쳐러브메레 유연제, 리필, 체리블러썸향, 1300ml, 4개 체리블러썸 유연제 4개 오리지널 세제 4개 출산/육아 > 유아세제 > 유아세탁비누'</li></ul> |
| 1.0 | <ul><li>'레드루트 유아 섬유유연제 세탁세제 1L 3개세트 바닐라코튼 세탁세제 _ 머스크_세탁세제 _ 스위트_유연제 _ 바닐라 출산/육아 > 유아세제 > 유아세탁세제'</li><li>'베비언스 핑크퐁 베이비 세탁세제 리필 2.2L 출산/육아 > 유아세제 > 유아세탁세제'</li><li>'[3개] 아이너바움 대용량 세탁세제 3개세트 무향 / 유아 아기 신생아 비건인증 세제 3.비건인증 안심 세제 3종(세탁2+섬유1)_세탁세제(네이처플라워 2개)_섬유유연제(스윗선데이 1개) 출산/육아 > 유아세제 > 유아세탁세제'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc23")
# Run inference
preds = model("마이비 피부에순한 유아섬유유연제 (리필 1600ml) 출산/육아 > 유아세제 > 유아세탁비누")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 8 | 15.3086 | 31 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 70 |
| 2.0 | 70 |
| 3.0 | 70 |
| 4.0 | 70 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0145 | 1 | 0.4811 | - |
| 0.7246 | 50 | 0.4993 | - |
| 1.4493 | 100 | 0.4843 | - |
| 2.1739 | 150 | 0.276 | - |
| 2.8986 | 200 | 0.0128 | - |
| 3.6232 | 250 | 0.0 | - |
| 4.3478 | 300 | 0.0 | - |
| 5.0725 | 350 | 0.0 | - |
| 5.7971 | 400 | 0.0 | - |
| 6.5217 | 450 | 0.0 | - |
| 7.2464 | 500 | 0.0 | - |
| 7.9710 | 550 | 0.0 | - |
| 8.6957 | 600 | 0.0 | - |
| 9.4203 | 650 | 0.0 | - |
| 10.1449 | 700 | 0.0 | - |
| 10.8696 | 750 | 0.0 | - |
| 11.5942 | 800 | 0.0 | - |
| 12.3188 | 850 | 0.0 | - |
| 13.0435 | 900 | 0.0 | - |
| 13.7681 | 950 | 0.0 | - |
| 14.4928 | 1000 | 0.0 | - |
| 15.2174 | 1050 | 0.0 | - |
| 15.9420 | 1100 | 0.0 | - |
| 16.6667 | 1150 | 0.0 | - |
| 17.3913 | 1200 | 0.0 | - |
| 18.1159 | 1250 | 0.0 | - |
| 18.8406 | 1300 | 0.0 | - |
| 19.5652 | 1350 | 0.0 | - |
| 20.2899 | 1400 | 0.0 | - |
| 21.0145 | 1450 | 0.0 | - |
| 21.7391 | 1500 | 0.0 | - |
| 22.4638 | 1550 | 0.0 | - |
| 23.1884 | 1600 | 0.0 | - |
| 23.9130 | 1650 | 0.0 | - |
| 24.6377 | 1700 | 0.0 | - |
| 25.3623 | 1750 | 0.0 | - |
| 26.0870 | 1800 | 0.0 | - |
| 26.8116 | 1850 | 0.0 | - |
| 27.5362 | 1900 | 0.0 | - |
| 28.2609 | 1950 | 0.0 | - |
| 28.9855 | 2000 | 0.0 | - |
| 29.7101 | 2050 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |