mini1013 commited on
Commit
ffbc619
·
verified ·
1 Parent(s): f3133df

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: '[도착보장] 엘프레리 에어윙 팬티 밤 기저귀 4팩 M사이즈 (팩당 32개입) 출산/육아 > 기저귀 > 일회용기저귀'
9
+ - text: 마미포코 물놀이팬티 4-5단계 (남녀선택) 12매 출산/육아 > 기저귀 > 수영장기저귀
10
+ - text: 플라팜 뉴코코맘 아기 천기저귀 5매 출산/육아 > 기저귀 > 천기저귀
11
+ - text: 프리미엄 친환경 아기 팬티기저귀 XL 18매 출산/육아 > 기저귀 > 일회용기저귀
12
+ - text: 팸퍼스 2025 통잠팬티 팬티형 밤기저귀 4단계 4팩+4팩(총 240매) 출산/육아 > 기저귀 > 일회용기저귀
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: mini1013/master_domain
19
+ ---
20
+
21
+ # SetFit with mini1013/master_domain
22
+
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
+
25
+ The model has been trained using an efficient few-shot learning technique that involves:
26
+
27
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+ - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
35
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
+ - **Maximum Sequence Length:** 512 tokens
37
+ - **Number of Classes:** 4 classes
38
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
+ <!-- - **Language:** Unknown -->
40
+ <!-- - **License:** Unknown -->
41
+
42
+ ### Model Sources
43
+
44
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
+
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
51
+ | 1.0 | <ul><li>'아라칸 아기 물놀이 방수 기저귀 3개입 2세트 총 6매 출산/육아 > 기저귀 > 수영장기저귀'</li><li>'마미포코 물놀이팬티 4-5단계 (남녀선택) 12매 출산/육아 > 기저귀 > 수영장기저귀'</li><li>'밤보 물놀이 수영팬티 스몰 1팩(12P) 출산/육아 > 기저귀 > 수영장기저귀'</li></ul> |
52
+ | 2.0 | <ul><li>'나비잠 나비잠 울트라씬듀얼핏 팬티 6팩 출산/육아 > 기저귀 > 일회용기저귀'</li><li>'르소메 프리미엄 통잠 밤 아기 신생아 발진없는 밴드형 기저귀 2팩 출산/육아 > 기저귀 > 일회용기저귀'</li><li>'애플크럼비 [보리보리/애플크럼비]애플크럼비 NEW 오리지널 테이프 XL 6팩(108매) 출산/육아 > 기저귀 > 일회용기저귀'</li></ul> |
53
+ | 3.0 | <ul><li>'아가방 새싹오가닉 기저귀 5매 출산/육아 > 기저귀 > 천기저귀'</li><li>'베베라온 신생아 밤부 천기저귀 선물 체험 출산/육아 > 기저귀 > 천기저귀'</li><li>'투유모유 무형광 무나염 순면 국산 아기 천기저귀 2박스 구매시 파우치 증정 출산/육아 > 기저귀 > 천기저귀'</li></ul> |
54
+ | 0.0 | <ul><li>'[베이비앙] 국내산 무형광 사이즈 상관없이 벨크로 탈부착으로 사용 가능 기저귀 고정을 위한 천 기저귀밴드 출산/육아 > 기저귀 > 기저귀커버/기저귀밴드'</li><li>'처비체리 천기저귀 커버 쁘띠코숑 P tit Cochon 1개 출산/육아 > 기저귀 > 기저귀커버/기저귀밴드'</li><li>'포켓식 원사이즈 기저귀커버 3장세트(잠금장치&색상선택) 출산/육아 > 기저귀 > 기저귀커버/기저귀밴드'</li></ul> |
55
+
56
+ ## Uses
57
+
58
+ ### Direct Use for Inference
59
+
60
+ First install the SetFit library:
61
+
62
+ ```bash
63
+ pip install setfit
64
+ ```
65
+
66
+ Then you can load this model and run inference.
67
+
68
+ ```python
69
+ from setfit import SetFitModel
70
+
71
+ # Download from the 🤗 Hub
72
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bc2")
73
+ # Run inference
74
+ preds = model("플라팜 뉴코코맘 아기 천기저귀 5매 출산/육아 > 기저귀 > 천기저귀")
75
+ ```
76
+
77
+ <!--
78
+ ### Downstream Use
79
+
80
+ *List how someone could finetune this model on their own dataset.*
81
+ -->
82
+
83
+ <!--
84
+ ### Out-of-Scope Use
85
+
86
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
87
+ -->
88
+
89
+ <!--
90
+ ## Bias, Risks and Limitations
91
+
92
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
93
+ -->
94
+
95
+ <!--
96
+ ### Recommendations
97
+
98
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
99
+ -->
100
+
101
+ ## Training Details
102
+
103
+ ### Training Set Metrics
104
+ | Training set | Min | Median | Max |
105
+ |:-------------|:----|:-------|:----|
106
+ | Word count | 9 | 12.95 | 20 |
107
+
108
+ | Label | Training Sample Count |
109
+ |:------|:----------------------|
110
+ | 0.0 | 20 |
111
+ | 1.0 | 20 |
112
+ | 2.0 | 20 |
113
+ | 3.0 | 20 |
114
+
115
+ ### Training Hyperparameters
116
+ - batch_size: (256, 256)
117
+ - num_epochs: (30, 30)
118
+ - max_steps: -1
119
+ - sampling_strategy: oversampling
120
+ - num_iterations: 50
121
+ - body_learning_rate: (2e-05, 1e-05)
122
+ - head_learning_rate: 0.01
123
+ - loss: CosineSimilarityLoss
124
+ - distance_metric: cosine_distance
125
+ - margin: 0.25
126
+ - end_to_end: False
127
+ - use_amp: False
128
+ - warmup_proportion: 0.1
129
+ - l2_weight: 0.01
130
+ - seed: 42
131
+ - eval_max_steps: -1
132
+ - load_best_model_at_end: False
133
+
134
+ ### Training Results
135
+ | Epoch | Step | Training Loss | Validation Loss |
136
+ |:------:|:----:|:-------------:|:---------------:|
137
+ | 0.0625 | 1 | 0.476 | - |
138
+ | 3.125 | 50 | 0.3608 | - |
139
+ | 6.25 | 100 | 0.0472 | - |
140
+ | 9.375 | 150 | 0.0 | - |
141
+ | 12.5 | 200 | 0.0 | - |
142
+ | 15.625 | 250 | 0.0 | - |
143
+ | 18.75 | 300 | 0.0 | - |
144
+ | 21.875 | 350 | 0.0 | - |
145
+ | 25.0 | 400 | 0.0 | - |
146
+ | 28.125 | 450 | 0.0 | - |
147
+
148
+ ### Framework Versions
149
+ - Python: 3.10.12
150
+ - SetFit: 1.1.0
151
+ - Sentence Transformers: 3.3.1
152
+ - Transformers: 4.44.2
153
+ - PyTorch: 2.2.0a0+81ea7a4
154
+ - Datasets: 3.2.0
155
+ - Tokenizers: 0.19.1
156
+
157
+ ## Citation
158
+
159
+ ### BibTeX
160
+ ```bibtex
161
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
162
+ doi = {10.48550/ARXIV.2209.11055},
163
+ url = {https://arxiv.org/abs/2209.11055},
164
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
165
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
166
+ title = {Efficient Few-Shot Learning Without Prompts},
167
+ publisher = {arXiv},
168
+ year = {2022},
169
+ copyright = {Creative Commons Attribution 4.0 International}
170
+ }
171
+ ```
172
+
173
+ <!--
174
+ ## Glossary
175
+
176
+ *Clearly define terms in order to be accessible across audiences.*
177
+ -->
178
+
179
+ <!--
180
+ ## Model Card Authors
181
+
182
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
183
+ -->
184
+
185
+ <!--
186
+ ## Model Card Contact
187
+
188
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
189
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bc",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c563a22f8864ee697256f0451194fd637d8294e247929df607ccbd20bbb17cba
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72541f91f1a6bf40a36300688441f0c40491f038f8a9650fb0ff9d122204c295
3
+ size 25447
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff