--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[매일유업]요미요미 유기농 쌀떡뻥 시금치와브로콜리30g 한팩골라담기 쌀과자 초록1단계(6개월 이후) 25g 출산/육아 > 아기간식 > 유아과자' - text: 팔도 뽀로로 밀크맛 235ml 1개입 대페트_칠성 제로 사이다 1.5L 12개입 출산/육아 > 아기간식 > 유아음료 - text: '[맛있는풍경] 유기농 쌀스틱 떡뻥 요거트볼 유아과자 어린이간식 11. 유기농 요거트 블루베리 출산/육아 > 아기간식 > 유아과자' - text: 팔도 뽀로로 딸기맛 235ml 12개 팩음료_JARDIN 로얄 헤이즐넛 230ml 20개 출산/육아 > 아기간식 > 유아음료 - text: '[베베당] 유기농 아기과자 아이 간식 떡뻥 쌀과자 롱 스틱 팝 요거트 치즈 과일칩 10+3 10. 유기농 현미스틱 브로콜리30g 출산/육아 > 아기간식 > 유아과자' metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9978471474703983 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2.0 | | | 0.0 | | | 1.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9978 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bc12") # Run inference preds = model("팔도 뽀로로 밀크맛 235ml 1개입 대페트_칠성 제로 사이다 1.5L 12개입 출산/육아 > 아기간식 > 유아음료") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 7 | 15.3381 | 37 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 70 | | 1.0 | 70 | | 2.0 | 70 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0238 | 1 | 0.4944 | - | | 1.1905 | 50 | 0.4153 | - | | 2.3810 | 100 | 0.1469 | - | | 3.5714 | 150 | 0.0014 | - | | 4.7619 | 200 | 0.0001 | - | | 5.9524 | 250 | 0.0001 | - | | 7.1429 | 300 | 0.0001 | - | | 8.3333 | 350 | 0.0 | - | | 9.5238 | 400 | 0.0 | - | | 10.7143 | 450 | 0.0 | - | | 11.9048 | 500 | 0.0 | - | | 13.0952 | 550 | 0.0 | - | | 14.2857 | 600 | 0.0 | - | | 15.4762 | 650 | 0.0 | - | | 16.6667 | 700 | 0.0 | - | | 17.8571 | 750 | 0.0 | - | | 19.0476 | 800 | 0.0 | - | | 20.2381 | 850 | 0.0 | - | | 21.4286 | 900 | 0.0 | - | | 22.6190 | 950 | 0.0 | - | | 23.8095 | 1000 | 0.0 | - | | 25.0 | 1050 | 0.0 | - | | 26.1905 | 1100 | 0.0 | - | | 27.3810 | 1150 | 0.0 | - | | 28.5714 | 1200 | 0.0 | - | | 29.7619 | 1250 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```