File size: 9,755 Bytes
033e651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[매일유업]요미요미 유기농 쌀떡뻥 시금치와브로콜리30g 한팩골라담기 쌀과자 초록1단계(6개월 이후) 25g 출산/육아 > 아기간식
    > 유아과자'
- text: 팔도 뽀로로 밀크맛 235ml 1개입 대페트_칠성 제로 사이다 1.5L 12개입 출산/육아 > 아기간식 > 유아음료
- text: '[맛있는풍경] 유기농 쌀스틱 떡뻥 요거트볼 유아과자 어린이간식 11. 유기농 요거트 블루베리 출산/육아 > 아기간식 > 유아과자'
- text: 팔도 뽀로로 딸기맛 235ml 12 팩음료_JARDIN 로얄 헤이즐넛 230ml 20 출산/육아 > 아기간식 > 유아음료
- text: '[베베당] 유기농 아기과자 아이 간식 떡뻥 쌀과자 롱 스틱 팝 요거트 치즈 과일칩 10+3 10. 유기농 현미스틱 브로콜리30g 출산/육아
    > 아기간식 > 유아과자'
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.9978471474703983
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                          |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0   | <ul><li>'팔도 뽀로로 홍삼쏙쏙 오렌지 100ml 20포  출산/육아 > 아기간식 > 유아음료'</li><li>'팔도 뽀로로 음료 어린이 키즈 주스 식혜 홍삼쏙쏙 워터젤리 모음 2.페트음료_사과x12개+블루베리12개 출산/육아 > 아기간식 > 유아음료'</li><li>'[1+1] 학교로 간 어린이주스 아기음료 유아주스 11종 사과즙 배도라지즙 [일반캡] 샤인머스캣 20팩_★안전캡★ 배 20팩_학교로간 10팩(맛&캡타입 랜덤) 출산/육아 > 아기간식 > 유아음료'</li></ul> |
| 0.0   | <ul><li>'[산골이유식] 산골간식 쌀참 떡뻥 과일참 알밤 꿀밤 배도라지즙 퓨레 푸딩 요거트 비타민젤리 어린이김 쌈장 사과퓨레1팩 출산/육아 > 아기간식 > 유아과자'</li><li>'내아이애 아기과자 유기농 떡뻥 백미 08_유기농 떡뻥 양파 출산/육아 > 아기간식 > 유아과자'</li><li>'숲바른 유기농 맑음과자 국내산 아기 과자 유아 간식 떡뻥 스틱 [스틱]단호박 출산/육아 > 아기간식 > 유아과자'</li></ul>                                 |
| 1.0   | <ul><li>'파스퇴르 위드맘 산양 제왕 100일 유아이유식분유 750g × 3개 출산/육아 > 아기간식 > 유아유제품'</li><li>'앱솔루트 킨더밀쉬 200ml  출산/육아 > 아기간식 > 유아유제품'</li><li>'매일유업 상하치즈 유기농 어린이치즈 3단계 60매 아기 간식  출산/육아 > 아기간식 > 유아유제품'</li></ul>                                                                                  |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.9978   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc12")
# Run inference
preds = model("팔도 뽀로로 밀크맛 235ml 1개입 대페트_칠성 제로 사이다 1.5L 12개입 출산/육아 > 아기간식 > 유아음료")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 7   | 15.3381 | 37  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 70                    |
| 1.0   | 70                    |
| 2.0   | 70                    |

### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0238  | 1    | 0.4944        | -               |
| 1.1905  | 50   | 0.4153        | -               |
| 2.3810  | 100  | 0.1469        | -               |
| 3.5714  | 150  | 0.0014        | -               |
| 4.7619  | 200  | 0.0001        | -               |
| 5.9524  | 250  | 0.0001        | -               |
| 7.1429  | 300  | 0.0001        | -               |
| 8.3333  | 350  | 0.0           | -               |
| 9.5238  | 400  | 0.0           | -               |
| 10.7143 | 450  | 0.0           | -               |
| 11.9048 | 500  | 0.0           | -               |
| 13.0952 | 550  | 0.0           | -               |
| 14.2857 | 600  | 0.0           | -               |
| 15.4762 | 650  | 0.0           | -               |
| 16.6667 | 700  | 0.0           | -               |
| 17.8571 | 750  | 0.0           | -               |
| 19.0476 | 800  | 0.0           | -               |
| 20.2381 | 850  | 0.0           | -               |
| 21.4286 | 900  | 0.0           | -               |
| 22.6190 | 950  | 0.0           | -               |
| 23.8095 | 1000 | 0.0           | -               |
| 25.0    | 1050 | 0.0           | -               |
| 26.1905 | 1100 | 0.0           | -               |
| 27.3810 | 1150 | 0.0           | -               |
| 28.5714 | 1200 | 0.0           | -               |
| 29.7619 | 1250 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->