File size: 1,775 Bytes
10c1f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: single_label_N_max_long_training
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# single_label_N_max_long_training

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8288

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.0568        | 1.0   | 674  | 1.9993          |
| 1.6024        | 2.0   | 1348 | 1.8497          |
| 1.0196        | 3.0   | 2022 | 1.9178          |
| 0.7622        | 4.0   | 2696 | 2.0412          |
| 0.6066        | 5.0   | 3370 | 2.2523          |
| 0.4136        | 6.0   | 4044 | 2.3845          |
| 0.3113        | 7.0   | 4718 | 2.5712          |
| 0.2777        | 8.0   | 5392 | 2.6790          |
| 0.208         | 9.0   | 6066 | 2.7464          |
| 0.1749        | 10.0  | 6740 | 2.8288          |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1