{ "cells": [ { "cell_type": "code", "execution_count": 8, "id": "daef9871-0fa5-4913-add2-bf82a6f3fa1a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: nbimporter in /opt/conda/lib/python3.11/site-packages (0.3.4)\n" ] } ], "source": [ "!pip install nbimporter" ] }, { "cell_type": "code", "execution_count": 10, "id": "e112e54c-6619-46b4-8681-c6315c05edf1", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ".\n", "----------------------------------------------------------------------\n", "Ran 1 test in 0.351s\n", "\n", "OK\n" ] } ], "source": [ "import unittest\n", "import numpy as np\n", "import nbimporter\n", "from main import preprocess_data\n", "\n", "class TestMainNotebook(unittest.TestCase):\n", "\n", " def setUp(self):\n", " \"\"\"Set up mock data for testing.\"\"\"\n", " # Sample data resembling MNIST\n", " self.train_images = np.random.rand(100, 28, 28) # Shape: (100, 28, 28)\n", " self.test_images = np.random.rand(20, 28, 28) # Shape: (20, 28, 28)\n", "\n", " def test_preprocess_data(self):\n", " \"\"\"Test the data preprocessing function.\"\"\"\n", " preprocessed_train, preprocessed_test = preprocess_data(self.train_images, self.test_images)\n", "\n", " # Verify shapes after preprocessing\n", " self.assertEqual(preprocessed_train.shape, (100, 28, 28, 1))\n", " self.assertEqual(preprocessed_test.shape, (20, 28, 28, 1))\n", "\n", " # Verify data normalization\n", " self.assertTrue(np.all(preprocessed_train <= 1.0))\n", " self.assertTrue(np.all(preprocessed_test <= 1.0))\n", "\n", "if __name__ == '__main__':\n", " unittest.main(argv=[''], exit=False)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel) *", "language": "python", "name": "conda-base-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 5 }