matthieulel commited on
Commit
f40f2c1
·
verified ·
1 Parent(s): 835f05f

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-tiny-22k-224
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: convnextv2-tiny-22k-224-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # convnextv2-tiny-22k-224-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-224](https://huggingface.co/facebook/convnextv2-tiny-22k-224) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4833
24
+ - Accuracy: 0.8563
25
+ - Precision: 0.8555
26
+ - Recall: 0.8563
27
+ - F1: 0.8554
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.5665 | 0.99 | 62 | 1.3996 | 0.5287 | 0.5180 | 0.5287 | 0.4897 |
62
+ | 0.8598 | 2.0 | 125 | 0.7433 | 0.7463 | 0.7490 | 0.7463 | 0.7396 |
63
+ | 0.7163 | 2.99 | 187 | 0.5703 | 0.7948 | 0.7919 | 0.7948 | 0.7863 |
64
+ | 0.5858 | 4.0 | 250 | 0.5194 | 0.8269 | 0.8292 | 0.8269 | 0.8190 |
65
+ | 0.5382 | 4.99 | 312 | 0.4936 | 0.8309 | 0.8314 | 0.8309 | 0.8302 |
66
+ | 0.5546 | 6.0 | 375 | 0.5054 | 0.8292 | 0.8366 | 0.8292 | 0.8234 |
67
+ | 0.5067 | 6.99 | 437 | 0.4817 | 0.8281 | 0.8324 | 0.8281 | 0.8278 |
68
+ | 0.4617 | 8.0 | 500 | 0.4565 | 0.8501 | 0.8545 | 0.8501 | 0.8497 |
69
+ | 0.4619 | 8.99 | 562 | 0.4382 | 0.8534 | 0.8520 | 0.8534 | 0.8498 |
70
+ | 0.4416 | 10.0 | 625 | 0.4330 | 0.8529 | 0.8505 | 0.8529 | 0.8504 |
71
+ | 0.4267 | 10.99 | 687 | 0.4274 | 0.8574 | 0.8575 | 0.8574 | 0.8566 |
72
+ | 0.3919 | 12.0 | 750 | 0.4407 | 0.8585 | 0.8604 | 0.8585 | 0.8563 |
73
+ | 0.3929 | 12.99 | 812 | 0.4373 | 0.8636 | 0.8625 | 0.8636 | 0.8603 |
74
+ | 0.3989 | 14.0 | 875 | 0.4351 | 0.8585 | 0.8602 | 0.8585 | 0.8577 |
75
+ | 0.3426 | 14.99 | 937 | 0.4476 | 0.8495 | 0.8500 | 0.8495 | 0.8484 |
76
+ | 0.361 | 16.0 | 1000 | 0.4463 | 0.8517 | 0.8505 | 0.8517 | 0.8501 |
77
+ | 0.2996 | 16.99 | 1062 | 0.4694 | 0.8596 | 0.8604 | 0.8596 | 0.8579 |
78
+ | 0.3394 | 18.0 | 1125 | 0.4494 | 0.8523 | 0.8526 | 0.8523 | 0.8517 |
79
+ | 0.3207 | 18.99 | 1187 | 0.4863 | 0.8506 | 0.8502 | 0.8506 | 0.8496 |
80
+ | 0.2993 | 20.0 | 1250 | 0.4748 | 0.8551 | 0.8516 | 0.8551 | 0.8521 |
81
+ | 0.287 | 20.99 | 1312 | 0.4980 | 0.8467 | 0.8436 | 0.8467 | 0.8434 |
82
+ | 0.3331 | 22.0 | 1375 | 0.4829 | 0.8546 | 0.8530 | 0.8546 | 0.8519 |
83
+ | 0.2852 | 22.99 | 1437 | 0.4943 | 0.8512 | 0.8520 | 0.8512 | 0.8508 |
84
+ | 0.2813 | 24.0 | 1500 | 0.4796 | 0.8574 | 0.8574 | 0.8574 | 0.8568 |
85
+ | 0.2807 | 24.99 | 1562 | 0.4811 | 0.8596 | 0.8576 | 0.8596 | 0.8576 |
86
+ | 0.2609 | 26.0 | 1625 | 0.4786 | 0.8608 | 0.8589 | 0.8608 | 0.8592 |
87
+ | 0.2571 | 26.99 | 1687 | 0.4777 | 0.8608 | 0.8605 | 0.8608 | 0.8602 |
88
+ | 0.2807 | 28.0 | 1750 | 0.4879 | 0.8596 | 0.8580 | 0.8596 | 0.8582 |
89
+ | 0.2578 | 28.99 | 1812 | 0.4829 | 0.8557 | 0.8550 | 0.8557 | 0.8549 |
90
+ | 0.2543 | 29.76 | 1860 | 0.4833 | 0.8563 | 0.8555 | 0.8563 | 0.8554 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8e23a824551a542baf3bedc12c06c2e6ae6dd798fa566e7087d29159ccb7c89b
3
  size 111520440
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36901a642f8975344839ace00f6e4a34d9ba7757cdcef6cf1bba10b17a55f4da
3
  size 111520440