|
from typing import Dict |
|
|
|
from ..utils import add_end_docstrings, is_vision_available |
|
from .base import GenericTensor, Pipeline, build_pipeline_init_args |
|
|
|
|
|
if is_vision_available(): |
|
from ..image_utils import load_image |
|
|
|
|
|
@add_end_docstrings( |
|
build_pipeline_init_args(has_image_processor=True), |
|
""" |
|
image_processor_kwargs (`dict`, *optional*): |
|
Additional dictionary of keyword arguments passed along to the image processor e.g. |
|
{"size": {"height": 100, "width": 100}} |
|
pool (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return the pooled output. If `False`, the model will return the raw hidden states. |
|
""", |
|
) |
|
class ImageFeatureExtractionPipeline(Pipeline): |
|
""" |
|
Image feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base |
|
transformer, which can be used as features in downstream tasks. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
|
|
>>> extractor = pipeline(model="google/vit-base-patch16-224", task="image-feature-extraction") |
|
>>> result = extractor("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", return_tensors=True) |
|
>>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input image. |
|
torch.Size([1, 197, 768]) |
|
``` |
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) |
|
|
|
This image feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: |
|
`"image-feature-extraction"`. |
|
|
|
All vision models may be used for this pipeline. See a list of all models, including community-contributed models on |
|
[huggingface.co/models](https://huggingface.co/models). |
|
""" |
|
|
|
def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs): |
|
preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs |
|
|
|
postprocess_params = {} |
|
if pool is not None: |
|
postprocess_params["pool"] = pool |
|
if return_tensors is not None: |
|
postprocess_params["return_tensors"] = return_tensors |
|
|
|
if "timeout" in kwargs: |
|
preprocess_params["timeout"] = kwargs["timeout"] |
|
|
|
return preprocess_params, {}, postprocess_params |
|
|
|
def preprocess(self, image, timeout=None, **image_processor_kwargs) -> Dict[str, GenericTensor]: |
|
image = load_image(image, timeout=timeout) |
|
model_inputs = self.image_processor(image, return_tensors=self.framework, **image_processor_kwargs) |
|
if self.framework == "pt": |
|
model_inputs = model_inputs.to(self.torch_dtype) |
|
return model_inputs |
|
|
|
def _forward(self, model_inputs): |
|
model_outputs = self.model(**model_inputs) |
|
return model_outputs |
|
|
|
def postprocess(self, model_outputs, pool=None, return_tensors=False): |
|
pool = pool if pool is not None else False |
|
|
|
if pool: |
|
if "pooler_output" not in model_outputs: |
|
raise ValueError( |
|
"No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option." |
|
) |
|
outputs = model_outputs["pooler_output"] |
|
else: |
|
|
|
outputs = model_outputs[0] |
|
|
|
if return_tensors: |
|
return outputs |
|
if self.framework == "pt": |
|
return outputs.tolist() |
|
elif self.framework == "tf": |
|
return outputs.numpy().tolist() |
|
|
|
def __call__(self, *args, **kwargs): |
|
""" |
|
Extract the features of the input(s). |
|
|
|
Args: |
|
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): |
|
The pipeline handles three types of images: |
|
|
|
- A string containing a http link pointing to an image |
|
- A string containing a local path to an image |
|
- An image loaded in PIL directly |
|
|
|
The pipeline accepts either a single image or a batch of images, which must then be passed as a string. |
|
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL |
|
images. |
|
timeout (`float`, *optional*, defaults to None): |
|
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and |
|
the call may block forever. |
|
Return: |
|
A nested list of `float`: The features computed by the model. |
|
""" |
|
return super().__call__(*args, **kwargs) |
|
|