--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v2-3swissdatasets results: [] --- # whisper-large-v2-3swissdatasets This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2758 - Wer: 17.7832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.5575 | 0.0727 | 1000 | 0.6201 | 35.9145 | | 0.4618 | 0.1454 | 2000 | 0.5084 | 30.6525 | | 0.3571 | 0.2181 | 3000 | 0.4122 | 25.1587 | | 0.3845 | 0.2908 | 4000 | 0.3702 | 23.1700 | | 0.2471 | 0.3635 | 5000 | 0.3127 | 19.8575 | | 0.2415 | 0.4362 | 6000 | 0.2758 | 17.7832 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.3.1+cu118 - Datasets 3.2.0 - Tokenizers 0.19.1