--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-oct-22 results: [] --- # segformer-b0-finetuned-segments-sidewalk-oct-22 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the maratuly/Pseudo-echo dataset. It achieves the following results on the evaluation set: - Loss: 0.3463 - Mean Iou: 0.7622 - Mean Accuracy: 0.9528 - Overall Accuracy: 0.9581 - Accuracy Unlabeled: nan - Accuracy Lv: 0.9931 - Accuracy Rv: 0.9354 - Accuracy La: 0.9533 - Accuracy Ra: 0.9293 - Iou Unlabeled: 0.0 - Iou Lv: 0.9931 - Iou Rv: 0.9354 - Iou La: 0.9533 - Iou Ra: 0.9293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Lv | Accuracy Rv | Accuracy La | Accuracy Ra | Iou Unlabeled | Iou Lv | Iou Rv | Iou La | Iou Ra | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-------------:|:------:|:------:|:------:|:------:| | 1.0046 | 5.0 | 20 | 1.3540 | 0.4931 | 0.7263 | 0.7606 | nan | 0.9742 | 0.6789 | 0.5862 | 0.6657 | 0.0 | 0.6545 | 0.6789 | 0.5540 | 0.5783 | | 0.7304 | 10.0 | 40 | 0.8262 | 0.6901 | 0.8908 | 0.9017 | nan | 0.9906 | 0.8147 | 0.9192 | 0.8387 | 0.0 | 0.9028 | 0.8145 | 0.9046 | 0.8287 | | 0.5957 | 15.0 | 60 | 0.5683 | 0.7395 | 0.9277 | 0.9367 | nan | 0.9896 | 0.9141 | 0.9225 | 0.8845 | 0.0 | 0.9766 | 0.9141 | 0.9225 | 0.8845 | | 0.5094 | 20.0 | 80 | 0.4881 | 0.7541 | 0.9426 | 0.9499 | nan | 0.9909 | 0.9368 | 0.9312 | 0.9116 | 0.0 | 0.9909 | 0.9368 | 0.9312 | 0.9116 | | 0.4681 | 25.0 | 100 | 0.4384 | 0.7689 | 0.9612 | 0.9653 | nan | 0.9942 | 0.9434 | 0.9650 | 0.9421 | 0.0 | 0.9942 | 0.9434 | 0.9650 | 0.9421 | | 0.4045 | 30.0 | 120 | 0.4078 | 0.7639 | 0.9549 | 0.9602 | nan | 0.9933 | 0.9418 | 0.9519 | 0.9328 | 0.0 | 0.9933 | 0.9418 | 0.9519 | 0.9328 | | 0.3956 | 35.0 | 140 | 0.3844 | 0.7664 | 0.9580 | 0.9625 | nan | 0.9939 | 0.9406 | 0.9551 | 0.9425 | 0.0 | 0.9939 | 0.9406 | 0.9551 | 0.9425 | | 0.3736 | 40.0 | 160 | 0.3736 | 0.7687 | 0.9609 | 0.9652 | nan | 0.9961 | 0.9409 | 0.9631 | 0.9436 | 0.0 | 0.9961 | 0.9409 | 0.9631 | 0.9436 | | 0.3431 | 45.0 | 180 | 0.3528 | 0.7622 | 0.9528 | 0.9577 | nan | 0.9923 | 0.9321 | 0.9539 | 0.9327 | 0.0 | 0.9923 | 0.9321 | 0.9539 | 0.9327 | | 0.3428 | 50.0 | 200 | 0.3463 | 0.7622 | 0.9528 | 0.9581 | nan | 0.9931 | 0.9354 | 0.9533 | 0.9293 | 0.0 | 0.9931 | 0.9354 | 0.9533 | 0.9293 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0