--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 6e88ab70-6a8d-4b8c-b0b3-77184d17a20d results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 950bcce6cc9a1d4d_train_data.json ds_type: json format: custom path: /workspace/input_data/950bcce6cc9a1d4d_train_data.json type: field_instruction: darija field_output: eng format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: mamung/6e88ab70-6a8d-4b8c-b0b3-77184d17a20d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.00015 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - down_proj - up_proj lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/950bcce6cc9a1d4d_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 2.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: eddysang wandb_mode: online wandb_name: d4e86d7e-2b2e-45b9-bf98-c0da59e845ed wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d4e86d7e-2b2e-45b9-bf98-c0da59e845ed warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ```

# 6e88ab70-6a8d-4b8c-b0b3-77184d17a20d This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=2e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0008 | 1 | 8.7248 | | 8.547 | 0.0071 | 9 | 6.6192 | | 5.2814 | 0.0141 | 18 | 4.4651 | | 4.2927 | 0.0212 | 27 | 4.0005 | | 3.8531 | 0.0283 | 36 | 3.8258 | | 3.6351 | 0.0353 | 45 | 3.6262 | | 3.6745 | 0.0424 | 54 | 3.5406 | | 3.2906 | 0.0495 | 63 | 3.4501 | | 3.4344 | 0.0565 | 72 | 3.3794 | | 3.4602 | 0.0636 | 81 | 3.3322 | | 3.0172 | 0.0707 | 90 | 3.3157 | | 3.4561 | 0.0778 | 99 | 3.3061 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1