File size: 4,369 Bytes
8fdcfb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d21c9dd
8fdcfb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7725d87
8fdcfb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
base_model: Qwen/Qwen2-1.5B
datasets: 
- macadeliccc/opus_samantha
- teknium/OpenHermes-2.5
- cognitivecomputations/samantha-data
- cognitivecomputations/samantha-1.5
- jondurbin/airoboros-3.2
- microsoft/orca-math-word-problems-200k
- Sao10K/Claude-3-Opus-Instruct-15K
- Locutusque/function-calling-chatml
- Migtissera/Hitchhikers
---
# Samantha Qwen2 1.5B

This model was trained on 2xL40S using FSDP and QLoRa. FP16 Merge is available [here](https://huggingface.co/macadeliccc/Samantha-Qwen2-1.5B)

## Prompt Template

```
<|im_start|>system
You are a helpful AI assistant<|im_end|>
<|im_start|>user
What is the capital of France?<|im_end|>
<|im_start|>assistant
```

## Launch Using VLLM

```bash
python -m vllm.entrypoints.openai.api_server \
    --model macadeliccc/Samantha-Qwen2-1.5B \
    --chat-template ./examples/template_chatml.jinja \
```

```python
from openai import OpenAI
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

chat_response = client.chat.completions.create(
    model="macadeliccc/Samantha-Qwen-2-1.5B",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Tell me a joke."},
    ]
)
print("Chat response:", chat_response)
```

## Quants

TODO

## Config

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: Qwen/Qwen2-1.5B
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: macadeliccc/opus_samantha
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: uncensored_ultrachat_20k_sharegpt.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: flattened_openhermes_200k.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: opus_instruct.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: airoboros_uncensored.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: orca_math_word_problems_sharegpt.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: sharegpt_starcoder.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: samantha_1.1_uncensored.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: samantha_1.5.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: sharegpt_hitchhikers_v1.json
    type: sharegpt
    field: conversations
    conversation: chatml


chat_template: chatml


dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out

sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
special_tokens:
```

</details><br>