luigimontaleone commited on
Commit
ab89740
·
verified ·
1 Parent(s): 3d43ab4

End of training

Browse files
Files changed (2) hide show
  1. README.md +80 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: openai/whisper-medium
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - balbus-classifier
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: whisper-medium-ft-balbus
13
+ results:
14
+ - task:
15
+ name: Audio Classification
16
+ type: audio-classification
17
+ dataset:
18
+ name: Balbus dataset
19
+ type: balbus-classifier
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.98
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # whisper-medium-ft-balbus
30
+
31
+ This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Balbus dataset dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 0.1332
34
+ - Accuracy: 0.98
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 5e-05
54
+ - train_batch_size: 4
55
+ - eval_batch_size: 4
56
+ - seed: 42
57
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
58
+ - lr_scheduler_type: linear
59
+ - lr_scheduler_warmup_ratio: 0.1
60
+ - num_epochs: 6
61
+ - mixed_precision_training: Native AMP
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 0.0033 | 1.0 | 450 | 0.1952 | 0.965 |
68
+ | 0.4973 | 2.0 | 900 | 0.0796 | 0.98 |
69
+ | 0.0021 | 3.0 | 1350 | 0.1894 | 0.97 |
70
+ | 0.3833 | 4.0 | 1800 | 0.0987 | 0.985 |
71
+ | 0.0003 | 5.0 | 2250 | 0.0741 | 0.99 |
72
+ | 0.0001 | 6.0 | 2700 | 0.1332 | 0.98 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.44.2
78
+ - Pytorch 2.5.1+cu124
79
+ - Datasets 3.2.0
80
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7c34c60b2c954d58895f5278545f05f331886caf3692a6fc06160238d5436157
3
  size 1229957888
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59f1e2307e4bf7f1124efb250840e3185a33d8d4d2121c73d327c63d86dfa53c
3
  size 1229957888