update model card README.md
Browse files
README.md
CHANGED
@@ -1,66 +1,38 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- ug
|
4 |
license: apache-2.0
|
5 |
tags:
|
6 |
-
- automatic-speech-recognition
|
7 |
-
- mozilla-foundation/common_voice_8_0
|
8 |
- generated_from_trainer
|
9 |
-
- ug
|
10 |
-
- robust-speech-event
|
11 |
datasets:
|
12 |
-
-
|
13 |
model-index:
|
14 |
-
- name:
|
15 |
-
results:
|
16 |
-
- task:
|
17 |
-
name: Automatic Speech Recognition
|
18 |
-
type: automatic-speech-recognition
|
19 |
-
dataset:
|
20 |
-
name: Common Voice 8
|
21 |
-
type: mozilla-foundation/common_voice_8_0
|
22 |
-
args: ug
|
23 |
-
metrics:
|
24 |
-
- name: Test WER
|
25 |
-
type: wer
|
26 |
-
value: 28.74
|
27 |
-
- name: Test CER
|
28 |
-
type: cer
|
29 |
-
value: 5.38
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
33 |
should probably proofread and complete it, then remove this comment. -->
|
34 |
|
35 |
-
#
|
36 |
|
37 |
-
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the
|
38 |
It achieves the following results on the evaluation set:
|
39 |
-
- Loss: 0.
|
40 |
-
-
|
41 |
|
42 |
## Model description
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
The model vocabulary consists of the alphabetic characters of the [Perso-Arabic script for the Uyghur language](https://omniglot.com/writing/uyghur.htm), with punctuation removed.
|
47 |
|
48 |
## Intended uses & limitations
|
49 |
|
50 |
-
|
51 |
-
- Draft video captions
|
52 |
-
- Indexing of recorded broadcasts
|
53 |
-
|
54 |
-
The model is not reliable enough to use as a substitute for live captions for accessibility purposes, and it should not be used in a manner that would infringe the privacy of any of the contributors to the Common Voice dataset nor any other speakers.
|
55 |
|
56 |
## Training and evaluation data
|
57 |
|
58 |
-
|
59 |
|
60 |
## Training procedure
|
61 |
|
62 |
-
The featurization layers of the XLS-R model are frozen while tuning a final CTC/LM layer on the Uyghur CV8 example sentences. A ramped learning rate is used with an initial warmup phase of 2000 steps, a max of 0.0001, and cooling back towards 0 for the remainder of the 18500 steps (100 epochs).
|
63 |
-
|
64 |
### Training hyperparameters
|
65 |
|
66 |
The following hyperparameters were used during training:
|
@@ -80,48 +52,31 @@ The following hyperparameters were used during training:
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
82 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
83 |
-
| 3.
|
84 |
-
|
|
85 |
-
| 1.
|
86 |
-
| 1.
|
87 |
-
| 1.
|
88 |
-
| 1.
|
89 |
-
| 1.
|
90 |
-
| 1.
|
91 |
-
| 1.
|
92 |
-
| 1.
|
93 |
-
|
|
94 |
-
|
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.8792 | 55.85 | 10500 | 0.2221 | 0.3656 |
|
104 |
-
| 0.8682 | 58.51 | 11000 | 0.2228 | 0.3323 |
|
105 |
-
| 0.8492 | 61.17 | 11500 | 0.2167 | 0.3446 |
|
106 |
-
| 0.8365 | 63.83 | 12000 | 0.2156 | 0.3321 |
|
107 |
-
| 0.8298 | 66.49 | 12500 | 0.2142 | 0.3400 |
|
108 |
-
| 0.808 | 69.15 | 13000 | 0.2079 | 0.3148 |
|
109 |
-
| 0.7999 | 71.81 | 13500 | 0.2117 | 0.3225 |
|
110 |
-
| 0.7871 | 74.47 | 14000 | 0.2088 | 0.3174 |
|
111 |
-
| 0.7858 | 77.13 | 14500 | 0.2060 | 0.3008 |
|
112 |
-
| 0.7764 | 79.78 | 15000 | 0.2128 | 0.3146 |
|
113 |
-
| 0.7684 | 82.45 | 15500 | 0.2086 | 0.3101 |
|
114 |
-
| 0.7717 | 85.11 | 16000 | 0.2048 | 0.3069 |
|
115 |
-
| 0.7435 | 87.76 | 16500 | 0.2027 | 0.3055 |
|
116 |
-
| 0.7378 | 90.42 | 17000 | 0.2059 | 0.2993 |
|
117 |
-
| 0.7406 | 93.08 | 17500 | 0.2040 | 0.2966 |
|
118 |
-
| 0.7361 | 95.74 | 18000 | 0.2056 | 0.3000 |
|
119 |
-
| 0.7379 | 98.4 | 18500 | 0.2031 | 0.2976 |
|
120 |
|
121 |
|
122 |
### Framework versions
|
123 |
|
124 |
-
- Transformers 4.
|
125 |
-
- Pytorch 1.10.
|
126 |
-
- Datasets 1.18.
|
127 |
- Tokenizers 0.11.0
|
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
|
|
|
|
5 |
datasets:
|
6 |
+
- common_voice
|
7 |
model-index:
|
8 |
+
- name: xls-r-uyghur-cv8
|
9 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
+
# xls-r-uyghur-cv8
|
16 |
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2163
|
20 |
+
- Wer: 0.3241
|
21 |
|
22 |
## Model description
|
23 |
|
24 |
+
More information needed
|
|
|
|
|
25 |
|
26 |
## Intended uses & limitations
|
27 |
|
28 |
+
More information needed
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## Training and evaluation data
|
31 |
|
32 |
+
More information needed
|
33 |
|
34 |
## Training procedure
|
35 |
|
|
|
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
55 |
+
| 3.2914 | 4.85 | 500 | 3.2283 | 1.0 |
|
56 |
+
| 3.0068 | 9.71 | 1000 | 2.7939 | 0.9980 |
|
57 |
+
| 1.4306 | 14.56 | 1500 | 0.4857 | 0.6314 |
|
58 |
+
| 1.2831 | 19.42 | 2000 | 0.3679 | 0.6066 |
|
59 |
+
| 1.2065 | 24.27 | 2500 | 0.3303 | 0.5560 |
|
60 |
+
| 1.1449 | 29.13 | 3000 | 0.3008 | 0.4690 |
|
61 |
+
| 1.0926 | 33.98 | 3500 | 0.2817 | 0.4619 |
|
62 |
+
| 1.0635 | 38.83 | 4000 | 0.2665 | 0.4391 |
|
63 |
+
| 1.029 | 43.69 | 4500 | 0.2616 | 0.4175 |
|
64 |
+
| 1.0064 | 48.54 | 5000 | 0.2468 | 0.4051 |
|
65 |
+
| 0.9659 | 53.4 | 5500 | 0.2394 | 0.3860 |
|
66 |
+
| 0.9254 | 58.25 | 6000 | 0.2373 | 0.3689 |
|
67 |
+
| 0.9209 | 63.11 | 6500 | 0.2347 | 0.3670 |
|
68 |
+
| 0.889 | 67.96 | 7000 | 0.2291 | 0.3687 |
|
69 |
+
| 0.8859 | 72.82 | 7500 | 0.2272 | 0.3616 |
|
70 |
+
| 0.8441 | 77.67 | 8000 | 0.2232 | 0.3538 |
|
71 |
+
| 0.8284 | 82.52 | 8500 | 0.2224 | 0.3382 |
|
72 |
+
| 0.8142 | 87.38 | 9000 | 0.2193 | 0.3310 |
|
73 |
+
| 0.8012 | 92.23 | 9500 | 0.2168 | 0.3276 |
|
74 |
+
| 0.7781 | 97.09 | 10000 | 0.2163 | 0.3241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
|
77 |
### Framework versions
|
78 |
|
79 |
+
- Transformers 4.17.0.dev0
|
80 |
+
- Pytorch 1.10.2+cu102
|
81 |
+
- Datasets 1.18.3
|
82 |
- Tokenizers 0.11.0
|