upload-your-files_1 / inference.py
loveisgone's picture
Upload folder using huggingface_hub
99dbc46 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import sys
import time
from typing import Any, Dict, List
import torch
from torch import nn
from omegaconf import DictConfig
from PIL import Image
from torchtune import config, utils
from torchtune.utils._generation import sample
from torchtune.models import convert_weights
from torchtune.data import Message
from models.tokenizer import START_IMAGE, END_IMAGE, START_AUDIO, END_AUDIO, START_VIDEO, END_VIDEO
from imagebind.models.imagebind_model import ModalityType
from diffusers import DiffusionPipeline
from models import add_proj_convert_weights, _BASE_TRAINABLE
import os
log = utils.get_logger("DEBUG")
add_proj_convert_weights()
class InferenceRecipe:
"""
Recipe for generating tokens from a dense Transformer-based LLM.
Currently this recipe supports single-GPU generation only. Speculative
decoding is not supported.
For more details on how to use this recipe for generation, please see our
tutorial: https://pytorch.org/torchtune/main/tutorials/e2e_flow.html#generation
For using this recipe with a quantized model, please the following section of
the above tutorial:
https://pytorch.org/torchtune/main/tutorials/e2e_flow.html#speeding-up-generation-using-quantization
"""
def __init__(self, cfg: DictConfig) -> None:
self._device = utils.get_device(device=cfg.device)
self._dtype = utils.get_dtype(dtype=cfg.dtype)
self._quantizer = config.instantiate(cfg.inference.quantizer)
self._quantization_mode = utils.get_quantizer_mode(self._quantizer)
self.prompt_template = cfg.inference.prompt_template
perception_tokens = cfg.model.perception_tokens
self._perception_tokens = ("0 " * perception_tokens)[:perception_tokens]
utils.set_seed(seed=cfg.seed)
def setup(self, cfg: DictConfig) -> None:
checkpointer = config.instantiate(cfg.checkpointer)
if self._quantization_mode is None:
ckpt_dict = checkpointer.load_checkpoint()
else:
# weights_only needs to be False when loading a quantized model
# currently loading a quantized model is only supported with the
# FullModelTorchTuneCheckpointer
ckpt_dict = checkpointer.load_checkpoint(weights_only=False)
self._model = self._setup_model(
model_cfg=cfg.model,
model_state_dict=ckpt_dict[utils.MODEL_KEY],
)
with self._device:
self._model.setup_caches(max_batch_size=cfg.batch_size, dtype=self._dtype)
self._tokenizer = config.instantiate(cfg.tokenizer)
self._mm_ids_start = self._tokenizer.encode(START_IMAGE + START_AUDIO + START_VIDEO, add_eos=False, add_bos=False)
self._mm_ids_end = self._tokenizer.encode(END_IMAGE + END_AUDIO + END_VIDEO, add_eos=False, add_bos=False)
self.use_clip = cfg.model.use_clip
if self.use_clip:
self._clip_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-unclip-small", torch_dtype=self._dtype).to(self._device)
def _setup_model(
self,
model_cfg: DictConfig,
model_state_dict: Dict[str, Any],
) -> nn.Module:
with utils.set_default_dtype(self._dtype), self._device:
model = config.instantiate(model_cfg)
if self._quantization_mode is not None:
model = self._quantizer.quantize(model)
model = model.to(device=self._device, dtype=self._dtype)
model.load_state_dict(model_state_dict)
# Validate model was loaded in with the expected dtype.
utils.validate_expected_param_dtype(model.named_parameters(), dtype=self._dtype)
log.debug(f"Model is initialized with precision {self._dtype}.")
return model
def mm_process_prompt(self, prompt):
return (
prompt
.replace("{image}", f"{START_IMAGE}{self._perception_tokens}{END_IMAGE}")
.replace("{audio}", f"{START_AUDIO}{self._perception_tokens}{END_AUDIO}")
.replace("{video}", f"{START_VIDEO}{self._perception_tokens}{END_VIDEO}")
)
def extract_mm_context(self, video_ib_embed, tokens):
context = {}
in_mm_embed = False
for idx, tok in enumerate(tokens):
in_mm_embed = in_mm_embed and not tok in self._mm_ids_end
if in_mm_embed:
#tokens[idx] # to support multiple embeds: get the value, match it up with the sample embed
context[idx] = {
"ib_embed": video_ib_embed.to(dtype=self._dtype, device=self._device),
}
in_mm_embed = in_mm_embed or tok in self._mm_ids_start
return context
@torch.no_grad()
def generate(self, cfg: DictConfig, video_ib_embed: List[float]):
messages = [
Message(
role="user",
content=self.mm_process_prompt(self.prompt_template),
),
Message(
role="assistant",
content="",
)
]
tokens, mask = self._tokenizer.tokenize_messages(messages)
tokens = tokens[:-2] # strip eot and eos
mm_context = [self.extract_mm_context(video_ib_embed, tokens)] # context should be a list, batch-id indexed
prompt = torch.tensor(tokens, dtype=torch.int, device=self._device)
self._model.tok_embeddings.set_context(mm_context)
self._model.output.set_context(mm_context)
bos_id = self._tokenizer.tt_model.encode("<|begin_of_text|>", allowed_special="all")[0]
allowed_id = self._tokenizer.tt_model.encode(f"<|eot_id|>{START_IMAGE}{END_IMAGE}{START_AUDIO}{END_AUDIO}{START_VIDEO}{END_VIDEO}", allowed_special="all")
disallowed_tokens = list(set(range(bos_id, bos_id + 256)) - set(allowed_id))
# self._model.output.weight.data[disallowed_tokens, :] = 0
def custom_generate_next_token(model, input_pos, x, temperature=1.0, top_k=None):
model.tok_embeddings.set_context([])
model.output.set_context([])
# x: [1, s]
# input_pos: [s]
logits = model(x, input_pos=input_pos)
# logits: [1, s, v] where v is vocab_size
# for sampling we extract the logits for the
# last token and convert to shape: [v]
logits = logits[0, -1]
# logits[disallowed_tokens] = float("-inf")
# sample the next token
token = sample(logits, temperature, top_k)
if token in disallowed_tokens:
return torch.tensor([self._tokenizer.eos_id]).to(x)
return token
# since quantized model uses torch.compile to get speedup, it needs a warm up / prefill run
# to get the accurate performance measurement
if self._quantization_mode is not None:
log.info("Starting compilation to improve generation performance ...")
custom_generate_next_token = torch.compile(
custom_generate_next_token, mode="max-autotune", fullgraph=True
)
t0 = time.perf_counter()
_ = utils.generate(
model=self._model,
prompt=prompt,
max_generated_tokens=2,
temperature=cfg.temperature,
top_k=cfg.top_k,
eos_id=self._tokenizer.eos_id,
custom_generate_next_token=custom_generate_next_token,
)
t = time.perf_counter() - t0
log.info(f"Warmup run for quantized model takes: {t:.02f} sec")
t0 = time.perf_counter()
generated_tokens = utils.generate(
model=self._model,
prompt=prompt,
max_generated_tokens=cfg.max_new_tokens,
temperature=cfg.temperature,
top_k=cfg.top_k,
eos_id=self._tokenizer.eos_id,
custom_generate_next_token=custom_generate_next_token,
)
t = time.perf_counter() - t0
cleaned_tokens = [t for t in generated_tokens[len(prompt):] if t not in disallowed_tokens + allowed_id]
caption = self._tokenizer.decode(cleaned_tokens)
# log.debug(f"Generated caption: {caption} in {t:.02f} sec")
return caption
@torch.no_grad()
def generate_batch(self, cfg: DictConfig, video_ib_embed: torch.Tensor):
log.info(f"inside generate_batch, video_ib_embed shape: {video_ib_embed.shape}")
batch_dim = video_ib_embed.size(0)
messages = [
Message(
role="user",
content=self.mm_process_prompt(self.prompt_template),
),
Message(role="assistant", content="")
]
tokens, mask = self._tokenizer.tokenize_messages(messages)
tokens = tokens[:-2] # strip eot and eos
mm_context = [self.extract_mm_context(e, tokens) for e in video_ib_embed] # context should be a list, batch-id indexed
prompt = torch.tensor(tokens, dtype=torch.int, device=self._device).expand(batch_dim, -1).clone()
prompt_length = prompt.size(1)
self._model.tok_embeddings.set_context(mm_context)
self._model.output.set_context(mm_context)
bos_id = self._tokenizer.tt_model.encode("<|begin_of_text|>", allowed_special="all")[0]
allowed_id = self._tokenizer.tt_model.encode(f"<|eot_id|>{START_IMAGE}{END_IMAGE}{START_AUDIO}{END_AUDIO}{START_VIDEO}{END_VIDEO}", allowed_special="all")
disallowed_tokens = list(set(range(bos_id, bos_id + 256)) - set(allowed_id))
def generate_next_token(model, input_pos, x, temperature=1.0, top_k=None):
# x: [B, s]
# input_pos: [s]
# logits: [B, s, v] where v is vocab_size
logits = model(x, input_pos=input_pos)[:, -1]
tokens = sample(logits, temperature, top_k)
return torch.tensor([
[self._tokenizer.eos_id if t in disallowed_tokens else t for t in toks]
for toks in tokens
]).to(x.device)
generated_tokens = prompt.clone()
# keeps track at a high level if we've already hit a stop token in a sequence so we can early stop
stop_token_reached = torch.zeros(batch_dim, dtype=torch.bool, device=prompt.device)
# generate the first tokens conditioned on the prompt
tokens = generate_next_token(
self._model,
input_pos=torch.arange(0, prompt_length, device=prompt.device),
x=prompt,
temperature=cfg.temperature,
top_k=cfg.top_k,
)
eot_reached_b = tokens == self._tokenizer.eot_id
generated_tokens = torch.cat([generated_tokens, tokens], dim=-1)
self._model.tok_embeddings.set_context([])
self._model.output.set_context([])
input_pos = torch.tensor([prompt_length], device=prompt.device)
for _ in range(cfg.max_new_tokens - 1):
tokens = generate_next_token(
self._model, input_pos=input_pos, x=tokens, temperature=cfg.temperature, top_k=cfg.top_k
)
eot_reached_b |= tokens == self._tokenizer.eot_id
tokens *= ~eot_reached_b
generated_tokens = torch.cat([generated_tokens, tokens], dim=-1)
if eot_reached_b.all():
print('eot_reached_b.all()')
break
input_pos += 1
captions = []
for caption_tokens in generated_tokens.tolist():
captions.append(self._tokenizer.decode(caption_tokens[prompt.size(1):]))
return captions
@config.parse
def main(cfg: DictConfig) -> None:
config.log_config(recipe_name="InferenceRecipe", cfg=cfg)
cfg.model = DictConfig({
"_component_": "models.mmllama3_8b",
"use_clip": False,
"perception_tokens": cfg.model.perception_tokens,
})
cfg.batch_size = 4
cfg.checkpointer.checkpoint_dir = os.path.dirname("/home/salman/tezuesh/omegalabs-anytoany-bittensor/sandboxing/cache/xzistance_omega-a2a-hotkey/meta_model_0.pth")
cfg.checkpointer.checkpoint_files = ["models/meta_model_0.pt"]
cfg.inference.max_new_tokens = 300
cfg.tokenizer.path = "./models/tokenizer.model"
inference_recipe = InferenceRecipe(cfg)
inference_recipe.setup(cfg=cfg)
captions = inference_recipe.generate_batch(cfg=cfg, video_ib_embed=torch.randn(4,1024))
print(captions)
if __name__ == "__main__":
sys.exit(main())