--- license: apache-2.0 inference: false tags: [green, llmware-rag, p1, ov] --- # bling-tiny-llama-ov **bling-tiny-llama-ov** is an OpenVino int4 quantized version of BLING Tiny-Llama 1B, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. [**bling-tiny-llama**](https://huggingface.co/llmware/bling-tiny-llama-v0) is a fact-based question-answering model, optimized for complex business documents. Get started right away 1. Install dependencies ``` pip3 install llmware pip3 install openvino pip3 install openvino_genai ``` 2. Hello World ``` from llmware.models import ModelCatalog model = ModelCatalog().load_model("bling-tiny-llama-ov") response = model.inference("The stock price is $45.\nWhat is the stock price?") print("response: ", response) ``` Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino) Looking for AI PC solutions and demos, contact us at [llmware](https://www.llmware.ai) ### Model Description - **Developed by:** llmware - **Model type:** tinyllama - **Parameters:** 1.1 billion - **Model Parent:** llmware/bling-tiny-llama-v0 - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Fact-based question-answering - **RAG Benchmark Accuracy Score:** 86.5 - **Quantization:** int4 ## Model Card Contact [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)