chansung commited on
Commit
f468eaa
·
verified ·
1 Parent(s): d103a5a

Model save

Browse files
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ base_model: google/gemma-7b
9
+ datasets:
10
+ - generator
11
+ model-index:
12
+ - name: gemma7b-summarize-gpt4o-64k
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # gemma7b-summarize-gpt4o-64k
20
+
21
+ This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the generator dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 5.5381
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 0.0002
43
+ - train_batch_size: 4
44
+ - eval_batch_size: 4
45
+ - seed: 42
46
+ - distributed_type: multi-GPU
47
+ - num_devices: 2
48
+ - gradient_accumulation_steps: 2
49
+ - total_train_batch_size: 16
50
+ - total_eval_batch_size: 8
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: cosine
53
+ - lr_scheduler_warmup_ratio: 0.1
54
+ - num_epochs: 15
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss |
59
+ |:-------------:|:-----:|:----:|:---------------:|
60
+ | 0.9333 | 1.0 | 406 | 2.4449 |
61
+ | 0.8399 | 2.0 | 812 | 2.3513 |
62
+ | 0.7898 | 3.0 | 1218 | 2.4311 |
63
+ | 0.7295 | 4.0 | 1624 | 2.5969 |
64
+ | 0.6377 | 5.0 | 2030 | 2.8601 |
65
+ | 0.5891 | 6.0 | 2436 | 3.1033 |
66
+ | 0.5095 | 7.0 | 2842 | 3.5735 |
67
+ | 0.4514 | 8.0 | 3248 | 3.9319 |
68
+ | 0.3872 | 9.0 | 3654 | 4.4386 |
69
+ | 0.3371 | 10.0 | 4060 | 4.8561 |
70
+ | 0.2993 | 11.0 | 4466 | 5.2020 |
71
+ | 0.29 | 12.0 | 4872 | 5.4070 |
72
+ | 0.2802 | 13.0 | 5278 | 5.5084 |
73
+ | 0.2693 | 14.0 | 5684 | 5.5384 |
74
+ | 0.2715 | 15.0 | 6090 | 5.5381 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - PEFT 0.10.0
80
+ - Transformers 4.40.0
81
+ - Pytorch 2.2.1+cu121
82
+ - Datasets 2.18.0
83
+ - Tokenizers 0.19.1
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:36387e4c6c73369de294f76e79b31616f6d103c61b1abc51db200ee7b04c07b8
3
  size 50056096
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:530dc4e1db6c3022c545725157c6e5d2e7ecf9b878bff1f8f1217168bfc5439e
3
  size 50056096
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 15.0,
3
+ "total_flos": 4.655418812370256e+18,
4
+ "train_loss": 0.9284773617542436,
5
+ "train_runtime": 39545.4398,
6
+ "train_samples": 59995,
7
+ "train_samples_per_second": 2.463,
8
+ "train_steps_per_second": 0.154
9
+ }
runs/Jun08_20-45-26_user-WS-C621E-SAGE-Series/events.out.tfevents.1717847247.user-WS-C621E-SAGE-Series.15766.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6d1197a13f7fbc6d79dbf7e900fffbef3fbbe60275039e3b524cbc09b02a3a44
3
- size 262533
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5edfe583774eebf4e76106848adfefc227b7c5f5041131b6eec910b45d38264
3
+ size 266956
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 15.0,
3
+ "total_flos": 4.655418812370256e+18,
4
+ "train_loss": 0.9284773617542436,
5
+ "train_runtime": 39545.4398,
6
+ "train_samples": 59995,
7
+ "train_samples_per_second": 2.463,
8
+ "train_steps_per_second": 0.154
9
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff