--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 65d5a49c-131a-4264-bdee-0528e6e3269d results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: Qwen/Qwen2.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5c9eb95e4e25b19e_train_data.json ds_type: json format: custom path: /workspace/input_data/5c9eb95e4e25b19e_train_data.json type: field_instruction: prompt field_output: response_0 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: true hub_model_id: lesso18/65d5a49c-131a-4264-bdee-0528e6e3269d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000218 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/G.O.D/5c9eb95e4e25b19e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 180 sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 27a1c4f9-6a41-47f2-ac22-eb3102eee7cc wandb_project: 18a wandb_run: your_name wandb_runid: 27a1c4f9-6a41-47f2-ac22-eb3102eee7cc warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# 65d5a49c-131a-4264-bdee-0528e6e3269d This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5064 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000218 - train_batch_size: 4 - eval_batch_size: 4 - seed: 180 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0009 | 1 | 1.9540 | | 1.4327 | 0.0430 | 50 | 1.7293 | | 1.4125 | 0.0859 | 100 | 1.7308 | | 1.4084 | 0.1289 | 150 | 1.7576 | | 1.3948 | 0.1718 | 200 | 1.6833 | | 1.4067 | 0.2148 | 250 | 1.6334 | | 1.479 | 0.2577 | 300 | 1.5825 | | 1.447 | 0.3007 | 350 | 1.5370 | | 1.1546 | 0.3436 | 400 | 1.5104 | | 1.2333 | 0.3866 | 450 | 1.5094 | | 1.3885 | 0.4296 | 500 | 1.5064 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1