File size: 2,125 Bytes
fe035e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: peft
license: llama3
base_model: scb10x/llama-3-typhoon-v1.5-8b-instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5a458ba6-011c-41c6-816a-ca03943f4a3e
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>
# 5a458ba6-011c-41c6-816a-ca03943f4a3e
This model is a fine-tuned version of [scb10x/llama-3-typhoon-v1.5-8b-instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000218
- train_batch_size: 4
- eval_batch_size: 4
- seed: 180
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 333
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0030 | 1 | 3.3393 |
| 1.7938 | 0.1504 | 50 | 1.9601 |
| 1.7947 | 0.3008 | 100 | 2.0332 |
| 1.6452 | 0.4511 | 150 | 1.6452 |
| 1.4151 | 0.6015 | 200 | 1.3894 |
| 1.4742 | 0.7519 | 250 | 1.1646 |
| 1.3103 | 0.9023 | 300 | 1.0833 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |