File size: 2,286 Bytes
e640d08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: peft
base_model: NousResearch/CodeLlama-13b-hf
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 7cf17d3f-f651-4c8e-aa52-d0e2f77c0e72
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>
# 7cf17d3f-f651-4c8e-aa52-d0e2f77c0e72
This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf](https://huggingface.co/NousResearch/CodeLlama-13b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1060
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000211
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0005 | 1 | 0.3389 |
| 0.1967 | 0.0272 | 50 | 0.1469 |
| 0.6418 | 0.0544 | 100 | 0.1823 |
| 0.2147 | 0.0816 | 150 | 0.1364 |
| 0.4591 | 0.1088 | 200 | 0.1453 |
| 0.1612 | 0.1360 | 250 | 0.1354 |
| 0.4845 | 0.1632 | 300 | 0.1224 |
| 0.1837 | 0.1904 | 350 | 0.1175 |
| 0.534 | 0.2176 | 400 | 0.1064 |
| 0.1899 | 0.2448 | 450 | 0.1069 |
| 0.4517 | 0.2720 | 500 | 0.1060 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |