--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf tags: - axolotl - generated_from_trainer model-index: - name: 82bd2304-0cbc-4561-bf2b-b1d44c5fbd0c results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf bf16: true chat_template: llama3 datasets: - data_files: - 128f57e7e6be6904_train_data.json ds_type: json format: custom path: /workspace/input_data/128f57e7e6be6904_train_data.json type: field_input: '' field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso06/82bd2304-0cbc-4561-bf2b-b1d44c5fbd0c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/128f57e7e6be6904_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ce240fb0-8cd5-4b8e-9187-87ff042a8315 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ce240fb0-8cd5-4b8e-9187-87ff042a8315 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 82bd2304-0cbc-4561-bf2b-b1d44c5fbd0c This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf](https://huggingface.co/NousResearch/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.9796 | 0.0011 | 1 | 1.5834 | | 6.2063 | 0.0053 | 5 | 1.5732 | | 5.8041 | 0.0106 | 10 | 1.3644 | | 4.7349 | 0.0159 | 15 | 1.1954 | | 4.5545 | 0.0212 | 20 | 1.1130 | | 4.8437 | 0.0265 | 25 | 1.1000 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1