--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf tags: - axolotl - generated_from_trainer model-index: - name: 3653c1c0-b5b1-43c5-9211-6e78beda6dc1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf bf16: true chat_template: llama3 datasets: - data_files: - 83dae1444e4dde97_train_data.json ds_type: json format: custom path: /workspace/input_data/83dae1444e4dde97_train_data.json type: field_input: text field_instruction: query field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso04/3653c1c0-b5b1-43c5-9211-6e78beda6dc1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 50 micro_batch_size: 8 mlflow_experiment_name: /tmp/83dae1444e4dde97_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 104c9530-1eec-43c2-a3d6-27e611ed65bb wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 104c9530-1eec-43c2-a3d6-27e611ed65bb warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# 3653c1c0-b5b1-43c5-9211-6e78beda6dc1 This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf](https://huggingface.co/NousResearch/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8772 | 0.0035 | 1 | 0.9869 | | 1.9241 | 0.0175 | 5 | 0.9838 | | 2.0508 | 0.0351 | 10 | 0.9312 | | 1.7236 | 0.0526 | 15 | 0.8261 | | 1.6313 | 0.0702 | 20 | 0.7486 | | 1.3513 | 0.0877 | 25 | 0.6970 | | 1.3305 | 0.1053 | 30 | 0.6721 | | 1.4231 | 0.1228 | 35 | 0.6569 | | 1.2976 | 0.1404 | 40 | 0.6487 | | 1.2135 | 0.1579 | 45 | 0.6453 | | 1.3353 | 0.1754 | 50 | 0.6447 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1