File size: 2,295 Bytes
e50149b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: peft
base_model: NousResearch/Yarn-Llama-2-7b-64k
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 09da2b92-cb46-444d-93a0-8ca82cf3071b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>
# 09da2b92-cb46-444d-93a0-8ca82cf3071b
This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-64k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4395
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000204
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0001 | 1 | 1.9391 |
| 3.2203 | 0.0042 | 50 | 1.6106 |
| 3.357 | 0.0083 | 100 | 1.6544 |
| 3.2823 | 0.0125 | 150 | 1.6403 |
| 3.3158 | 0.0167 | 200 | 1.5910 |
| 3.1395 | 0.0208 | 250 | 1.5721 |
| 3.1858 | 0.0250 | 300 | 1.5131 |
| 3.3376 | 0.0292 | 350 | 1.4698 |
| 3.0556 | 0.0334 | 400 | 1.4484 |
| 3.2623 | 0.0375 | 450 | 1.4412 |
| 3.2508 | 0.0417 | 500 | 1.4395 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |