--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-560m tags: - axolotl - generated_from_trainer model-index: - name: caefd3b1-bcf8-49a3-8045-8aa6143ff9a6 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloom-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c452a8f62092d721_train_data.json ds_type: json format: custom path: /workspace/input_data/c452a8f62092d721_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/caefd3b1-bcf8-49a3-8045-8aa6143ff9a6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/c452a8f62092d721_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: eb1b3b7e-205e-4952-aa9d-961daa655100 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: eb1b3b7e-205e-4952-aa9d-961daa655100 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# caefd3b1-bcf8-49a3-8045-8aa6143ff9a6 This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0146 | 1 | 2.2391 | | 8.5008 | 0.2482 | 17 | 2.0717 | | 7.9508 | 0.4964 | 34 | 1.9649 | | 8.1261 | 0.7445 | 51 | 1.9006 | | 7.4785 | 0.9927 | 68 | 1.8515 | | 7.5754 | 1.2409 | 85 | 1.8145 | | 7.3618 | 1.4891 | 102 | 1.7921 | | 7.6284 | 1.7372 | 119 | 1.7698 | | 7.2703 | 1.9854 | 136 | 1.7584 | | 7.0179 | 2.2336 | 153 | 1.7514 | | 7.3217 | 2.4818 | 170 | 1.7501 | | 7.298 | 2.7299 | 187 | 1.7478 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1