--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: 94fada21-acb7-4c08-9eb5-5b93f29cf10d results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 74adf53c74422e9c_train_data.json ds_type: json format: custom path: /workspace/input_data/74adf53c74422e9c_train_data.json type: field_input: material field_instruction: questions field_output: gpt4_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/94fada21-acb7-4c08-9eb5-5b93f29cf10d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/74adf53c74422e9c_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 31f4ffea-837d-4756-a086-902d589e7281 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 31f4ffea-837d-4756-a086-902d589e7281 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 94fada21-acb7-4c08-9eb5-5b93f29cf10d This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0049 | 1 | 3.1936 | | 12.1925 | 0.0441 | 9 | 3.1812 | | 12.2752 | 0.0881 | 18 | 3.0855 | | 12.1308 | 0.1322 | 27 | 2.9765 | | 11.317 | 0.1763 | 36 | 2.9036 | | 11.3475 | 0.2203 | 45 | 2.8526 | | 10.8064 | 0.2644 | 54 | 2.8190 | | 10.92 | 0.3084 | 63 | 2.7968 | | 10.7613 | 0.3525 | 72 | 2.7828 | | 11.153 | 0.3966 | 81 | 2.7752 | | 10.7842 | 0.4406 | 90 | 2.7722 | | 11.1974 | 0.4847 | 99 | 2.7715 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1