--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: 47160379-0888-4d5a-b10a-23597f497138 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dceb95c67dfd689a_train_data.json ds_type: json format: custom path: /workspace/input_data/dceb95c67dfd689a_train_data.json type: field_input: ingredients field_instruction: title field_output: directions format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/47160379-0888-4d5a-b10a-23597f497138 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 400 micro_batch_size: 8 mlflow_experiment_name: /tmp/dceb95c67dfd689a_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: abe5ea54-7e04-4354-bf82-c8ee9feb6e09 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: abe5ea54-7e04-4354-bf82-c8ee9feb6e09 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 47160379-0888-4d5a-b10a-23597f497138 This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.0482 | | 0.849 | 0.0023 | 34 | 0.8385 | | 0.8132 | 0.0046 | 68 | 0.8286 | | 0.8264 | 0.0069 | 102 | 0.8240 | | 0.8151 | 0.0092 | 136 | 0.8195 | | 0.7621 | 0.0115 | 170 | 0.8164 | | 0.8271 | 0.0137 | 204 | 0.8147 | | 0.787 | 0.0160 | 238 | 0.8127 | | 0.8079 | 0.0183 | 272 | 0.8107 | | 0.7842 | 0.0206 | 306 | 0.8097 | | 0.825 | 0.0229 | 340 | 0.8090 | | 0.8118 | 0.0252 | 374 | 0.8088 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1