File size: 2,028 Bytes
d41edb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: studio-ousia/luke-base
tags:
- generated_from_trainer
datasets:
- ontonotes5
model-index:
- name: luke-base_on5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# luke-base_on5

This model is a fine-tuned version of [studio-ousia/luke-base](https://huggingface.co/studio-ousia/luke-base) on the ontonotes5 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0732
- F1-type-match: 0.4835
- F1-partial: 0.4930
- F1-strict: 0.4695
- F1-exact: 0.4832

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1-type-match | F1-partial | F1-strict | F1-exact |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:---------:|:--------:|
| 0.0756        | 1.0   | 936  | 0.0644          | 0.3975        | 0.4054     | 0.3800    | 0.3941   |
| 0.0508        | 2.0   | 1873 | 0.0589          | 0.6196        | 0.6313     | 0.5967    | 0.6158   |
| 0.0347        | 3.0   | 2809 | 0.0664          | 0.4686        | 0.4772     | 0.4530    | 0.4665   |
| 0.0243        | 4.0   | 3746 | 0.0677          | 0.3951        | 0.4033     | 0.3830    | 0.3948   |
| 0.0166        | 5.0   | 4680 | 0.0732          | 0.4835        | 0.4930     | 0.4695    | 0.4832   |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1