File size: 2,028 Bytes
d41edb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
base_model: studio-ousia/luke-base
tags:
- generated_from_trainer
datasets:
- ontonotes5
model-index:
- name: luke-base_on5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# luke-base_on5
This model is a fine-tuned version of [studio-ousia/luke-base](https://huggingface.co/studio-ousia/luke-base) on the ontonotes5 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0732
- F1-type-match: 0.4835
- F1-partial: 0.4930
- F1-strict: 0.4695
- F1-exact: 0.4832
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1-type-match | F1-partial | F1-strict | F1-exact |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:---------:|:--------:|
| 0.0756 | 1.0 | 936 | 0.0644 | 0.3975 | 0.4054 | 0.3800 | 0.3941 |
| 0.0508 | 2.0 | 1873 | 0.0589 | 0.6196 | 0.6313 | 0.5967 | 0.6158 |
| 0.0347 | 3.0 | 2809 | 0.0664 | 0.4686 | 0.4772 | 0.4530 | 0.4665 |
| 0.0243 | 4.0 | 3746 | 0.0677 | 0.3951 | 0.4033 | 0.3830 | 0.3948 |
| 0.0166 | 5.0 | 4680 | 0.0732 | 0.4835 | 0.4930 | 0.4695 | 0.4832 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1
|