--- license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-r22-e results: [] --- # whisper-medium-r22-e This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2567 - Wer: 32.4317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 4.2827 | 0.02 | 10 | 2.4594 | 30.6262 | | 1.5383 | 0.04 | 20 | 0.9529 | 36.0561 | | 0.5967 | 0.05 | 30 | 0.4230 | 34.7607 | | 0.3559 | 0.07 | 40 | 0.3960 | 33.9352 | | 0.314 | 0.09 | 50 | 0.3285 | 32.7270 | | 0.3339 | 0.11 | 60 | 0.3362 | 33.3244 | | 0.3148 | 0.13 | 70 | 0.2927 | 31.6464 | | 0.3128 | 0.14 | 80 | 0.2896 | 32.5458 | | 0.3136 | 0.16 | 90 | 0.2828 | 32.8613 | | 0.272 | 0.18 | 100 | 0.2818 | 33.9419 | | 0.1936 | 0.2 | 110 | 0.2702 | 30.9148 | | 0.2541 | 0.22 | 120 | 0.2644 | 31.8209 | | 0.2957 | 0.23 | 130 | 0.2614 | 31.6531 | | 0.2867 | 0.25 | 140 | 0.2574 | 31.6397 | | 0.2085 | 0.27 | 150 | 0.2567 | 32.4317 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1