Push model files
Browse files- attention.py +387 -0
- blocks.py +55 -0
- config.json +84 -0
- configuration_mpt.py +183 -0
- fc.py +7 -0
- ffn.py +96 -0
- flash_attn_triton.py +484 -0
- generation_config.json +5 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +653 -0
- norm.py +57 -0
- special_tokens_map.json +36 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1758 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
- warnings.py +22 -0
attention.py
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Attention layers."""
|
2 |
+
import math
|
3 |
+
import warnings
|
4 |
+
from typing import Any, Optional
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import transformers
|
8 |
+
from einops import rearrange
|
9 |
+
from packaging import version
|
10 |
+
from torch import nn
|
11 |
+
from .fc import FC_CLASS_REGISTRY
|
12 |
+
from .norm import NORM_CLASS_REGISTRY
|
13 |
+
|
14 |
+
def is_flash_v2_installed(v2_version: str='2.0.0'):
|
15 |
+
assert version.parse(v2_version) >= version.parse('2.0.0')
|
16 |
+
try:
|
17 |
+
import flash_attn as flash_attn
|
18 |
+
except:
|
19 |
+
return False
|
20 |
+
return version.parse(flash_attn.__version__) >= version.parse(v2_version)
|
21 |
+
|
22 |
+
def is_flash_v1_installed():
|
23 |
+
try:
|
24 |
+
import flash_attn as flash_attn
|
25 |
+
except:
|
26 |
+
return False
|
27 |
+
return version.parse(flash_attn.__version__) < version.parse('2.0.0')
|
28 |
+
|
29 |
+
def is_transformers_version_gte(hf_version: str) -> bool:
|
30 |
+
return version.parse(transformers.__version__) >= version.parse(hf_version)
|
31 |
+
|
32 |
+
def check_alibi_support(attention_impl: str) -> bool:
|
33 |
+
return attention_impl != 'flash' or is_flash_v2_installed(v2_version='v2.4.2')
|
34 |
+
if is_flash_v1_installed():
|
35 |
+
import transformers
|
36 |
+
transformers.utils.is_flash_attn_available = lambda: False
|
37 |
+
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
|
38 |
+
|
39 |
+
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool:
|
40 |
+
if original_is_causal and num_query_tokens != num_key_tokens:
|
41 |
+
if num_query_tokens != 1:
|
42 |
+
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
|
43 |
+
else:
|
44 |
+
return False
|
45 |
+
return original_is_causal
|
46 |
+
|
47 |
+
def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor:
|
48 |
+
"""Perform repeat of kv heads along a particular dimension.
|
49 |
+
|
50 |
+
hidden.shape expected to be: (batch size, seq len, kv_n_heads, head_dim)
|
51 |
+
n_rep: amount of repetitions of kv_n_heads
|
52 |
+
Unlike torch.repeat_interleave, this function avoids allocating new memory.
|
53 |
+
"""
|
54 |
+
if n_rep == 1:
|
55 |
+
return hidden
|
56 |
+
b, s, kv_n_heads, d = hidden.shape
|
57 |
+
hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
|
58 |
+
return hidden.reshape(b, s, kv_n_heads * n_rep, d)
|
59 |
+
|
60 |
+
def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
|
61 |
+
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
62 |
+
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
|
63 |
+
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
|
64 |
+
if past_key_value is not None:
|
65 |
+
if len(past_key_value) != 0:
|
66 |
+
k = torch.cat([past_key_value[0], k], dim=3)
|
67 |
+
v = torch.cat([past_key_value[1], v], dim=2)
|
68 |
+
past_key_value = (k, v)
|
69 |
+
b, _, s_q, d = q.shape
|
70 |
+
s_k = k.size(-1)
|
71 |
+
if kv_n_heads > 1 and kv_n_heads < n_heads:
|
72 |
+
k = repeat_kv_for_gqa(k.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
|
73 |
+
v = repeat_kv_for_gqa(v.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
|
74 |
+
if softmax_scale is None:
|
75 |
+
softmax_scale = 1 / math.sqrt(d)
|
76 |
+
attn_weight = q.matmul(k) * softmax_scale
|
77 |
+
if attn_bias is not None:
|
78 |
+
_s_q = max(0, attn_bias.size(2) - s_q)
|
79 |
+
_s_k = max(0, attn_bias.size(3) - s_k)
|
80 |
+
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
81 |
+
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
|
82 |
+
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
|
83 |
+
attn_weight = attn_weight + attn_bias
|
84 |
+
min_val = torch.finfo(q.dtype).min
|
85 |
+
if key_padding_mask is not None:
|
86 |
+
if attn_bias is not None:
|
87 |
+
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
88 |
+
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
89 |
+
if is_causal and (not q.size(2) == 1):
|
90 |
+
s = max(s_q, s_k)
|
91 |
+
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32)
|
92 |
+
causal_mask = causal_mask.tril()
|
93 |
+
causal_mask = causal_mask.to(torch.bool)
|
94 |
+
causal_mask = ~causal_mask
|
95 |
+
causal_mask = causal_mask[-s_q:, -s_k:]
|
96 |
+
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
|
97 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
98 |
+
if dropout_p:
|
99 |
+
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
|
100 |
+
out = attn_weight.to(v.dtype).matmul(v)
|
101 |
+
out = rearrange(out, 'b h s d -> b s (h d)')
|
102 |
+
if needs_weights:
|
103 |
+
return (out, attn_weight, past_key_value)
|
104 |
+
return (out, None, past_key_value)
|
105 |
+
|
106 |
+
def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[list[torch.dtype]]=None):
|
107 |
+
if valid_dtypes is None:
|
108 |
+
valid_dtypes = [torch.float16, torch.bfloat16]
|
109 |
+
for tensor in tensors:
|
110 |
+
if tensor.dtype not in valid_dtypes:
|
111 |
+
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
|
112 |
+
if not tensor.is_cuda:
|
113 |
+
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
114 |
+
|
115 |
+
def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False, should_repeat_kv_for_gqa: Optional[bool]=True, sliding_window_size: int=-1, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
|
116 |
+
if key_padding_mask is not None:
|
117 |
+
raise ValueError('key_padding_mask should be None for flash attn.')
|
118 |
+
del key_padding_mask
|
119 |
+
if flash_attn_padding_info is None:
|
120 |
+
raise ValueError('flash_attn_padding_info is required for flash attn.')
|
121 |
+
try:
|
122 |
+
from flash_attn import bert_padding, flash_attn_interface
|
123 |
+
except:
|
124 |
+
raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3.6')
|
125 |
+
check_valid_inputs(query, key, value)
|
126 |
+
if past_key_value is not None:
|
127 |
+
if len(past_key_value) != 0:
|
128 |
+
key = torch.cat([past_key_value[0], key], dim=1)
|
129 |
+
value = torch.cat([past_key_value[1], value], dim=1)
|
130 |
+
past_key_value = (key, value)
|
131 |
+
if attn_bias is not None:
|
132 |
+
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
133 |
+
batch_size, seqlen = query.shape[:2]
|
134 |
+
indices_q = flash_attn_padding_info['indices_q']
|
135 |
+
indices_k = flash_attn_padding_info['indices_k']
|
136 |
+
indices_v = flash_attn_padding_info['indices_v']
|
137 |
+
cu_seqlens_q = flash_attn_padding_info['cu_seqlens_q']
|
138 |
+
cu_seqlens_k = flash_attn_padding_info['cu_seqlens_k']
|
139 |
+
max_seqlen_q = flash_attn_padding_info['max_seqlen_q']
|
140 |
+
max_seqlen_k = flash_attn_padding_info['max_seqlen_k']
|
141 |
+
query_unpad = bert_padding.index_first_axis(rearrange(query, 'b s ... -> (b s) ...'), indices_q)
|
142 |
+
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
143 |
+
key_unpad = bert_padding.index_first_axis(rearrange(key, 'b s ... -> (b s) ...'), indices_k)
|
144 |
+
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
|
145 |
+
value_unpad = bert_padding.index_first_axis(rearrange(value, 'b s ... -> (b s) ...'), indices_v)
|
146 |
+
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
|
147 |
+
if kv_n_heads < n_heads and (not is_flash_v2_installed()) and (not should_repeat_kv_for_gqa):
|
148 |
+
raise ValueError('For Grouped Query Attention or Multi Query Attention, should_repeat_kv_for_gqa should be set to True if not using Flash Attention v2.')
|
149 |
+
if should_repeat_kv_for_gqa:
|
150 |
+
if kv_n_heads == 1:
|
151 |
+
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
|
152 |
+
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
|
153 |
+
elif kv_n_heads < n_heads:
|
154 |
+
key_unpad = repeat_kv_for_gqa(key_unpad.view(1, key_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(key_unpad.size(0), n_heads, -1)
|
155 |
+
value_unpad = repeat_kv_for_gqa(value_unpad.view(1, value_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(value_unpad.size(0), n_heads, -1)
|
156 |
+
dropout_p = dropout_p if training else 0.0
|
157 |
+
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
158 |
+
if is_flash_v1_installed():
|
159 |
+
output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
160 |
+
elif is_flash_v2_installed():
|
161 |
+
alibi_kwargs = {}
|
162 |
+
if check_alibi_support('flash'):
|
163 |
+
alibi_kwargs = {'alibi_slopes': alibi_slopes}
|
164 |
+
elif alibi_slopes is not None:
|
165 |
+
raise ValueError('alibi_slopes is only supported for flash-attn>=2.4.2')
|
166 |
+
output_unpad = flash_attn_interface.flash_attn_varlen_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights, window_size=(sliding_window_size, sliding_window_size), **alibi_kwargs)
|
167 |
+
else:
|
168 |
+
raise RuntimeError('flash-attn==1.0.9 or flash-attn==2.4.2 is required.')
|
169 |
+
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
170 |
+
return (output, None, past_key_value)
|
171 |
+
|
172 |
+
def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
|
173 |
+
try:
|
174 |
+
from .flash_attn_triton import flash_attn_func
|
175 |
+
except:
|
176 |
+
_installed = False
|
177 |
+
if version.parse(torch.__version__) < version.parse('2.0.0'):
|
178 |
+
_installed = True
|
179 |
+
try:
|
180 |
+
from flash_attn.flash_attn_triton import flash_attn_func
|
181 |
+
except:
|
182 |
+
_installed = False
|
183 |
+
if not _installed:
|
184 |
+
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' + 'and `pip install .[gpu]` if installing from llm-foundry source or ' + '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' + 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' + 'Note: (1) requires you have CMake and PyTorch already installed.')
|
185 |
+
check_valid_inputs(query, key, value)
|
186 |
+
if past_key_value is not None:
|
187 |
+
if len(past_key_value) != 0:
|
188 |
+
key = torch.cat([past_key_value[0], key], dim=1)
|
189 |
+
value = torch.cat([past_key_value[1], value], dim=1)
|
190 |
+
past_key_value = (key, value)
|
191 |
+
if attn_bias is not None:
|
192 |
+
_s_q = max(0, attn_bias.size(2) - query.size(1))
|
193 |
+
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
194 |
+
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
195 |
+
if dropout_p:
|
196 |
+
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
197 |
+
dropout_p = dropout_p if training else 0.0
|
198 |
+
if needs_weights:
|
199 |
+
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
|
200 |
+
if key_padding_mask is not None:
|
201 |
+
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
202 |
+
b_size, s_k = key_padding_mask.shape[:2]
|
203 |
+
if attn_bias is None:
|
204 |
+
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
205 |
+
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
|
206 |
+
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
207 |
+
key = rearrange(key, 'b s (h d) -> b s h d', h=kv_n_heads)
|
208 |
+
value = rearrange(value, 'b s (h d) -> b s h d', h=kv_n_heads)
|
209 |
+
if kv_n_heads == 1:
|
210 |
+
key = key.repeat(1, 1, n_heads, 1)
|
211 |
+
value = value.repeat(1, 1, n_heads, 1)
|
212 |
+
elif kv_n_heads < n_heads:
|
213 |
+
key = repeat_kv_for_gqa(key, n_heads // kv_n_heads)
|
214 |
+
value = repeat_kv_for_gqa(value, n_heads // kv_n_heads)
|
215 |
+
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
216 |
+
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
217 |
+
output = attn_output.view(*attn_output.shape[:2], -1)
|
218 |
+
return (output, None, past_key_value)
|
219 |
+
|
220 |
+
class GroupedQueryAttention(nn.Module):
|
221 |
+
"""Grouped Query Attention (GQA) is a generalization of Multi-head (MHA).
|
222 |
+
|
223 |
+
and Multi-query attention (MQA).
|
224 |
+
|
225 |
+
This allows the user to set a variable of number of kv_n_heads, rather than
|
226 |
+
just n_heads or 1, as in MHA and MQA. Using torch or triton attention
|
227 |
+
implementation enables user to also use additive bias.
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
|
231 |
+
super().__init__()
|
232 |
+
self.attn_impl = attn_impl
|
233 |
+
self.clip_qkv = clip_qkv
|
234 |
+
self.qk_ln = qk_ln
|
235 |
+
self.qk_gn = qk_gn
|
236 |
+
self.d_model = d_model
|
237 |
+
self.n_heads = n_heads
|
238 |
+
self.kv_n_heads = kv_n_heads
|
239 |
+
self.sliding_window_size = sliding_window_size
|
240 |
+
self.head_dim = d_model // n_heads
|
241 |
+
if self.kv_n_heads <= 0:
|
242 |
+
raise ValueError('kv_n_heads should be greater than zero.')
|
243 |
+
if self.kv_n_heads > self.n_heads:
|
244 |
+
raise ValueError('The number of KV heads should be less than or equal to Q heads.')
|
245 |
+
if self.n_heads % self.kv_n_heads != 0:
|
246 |
+
raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.')
|
247 |
+
if qk_ln and qk_gn:
|
248 |
+
raise ValueError('Only one of qk_ln and qk_gn can be set to True.')
|
249 |
+
self.softmax_scale = softmax_scale
|
250 |
+
if self.softmax_scale is None:
|
251 |
+
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
252 |
+
self.attn_dropout_p = attn_pdrop
|
253 |
+
fc_kwargs: dict[str, Any] = {'bias': bias}
|
254 |
+
fc_kwargs['device'] = device
|
255 |
+
self.Wqkv = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model + 2 * self.kv_n_heads * self.head_dim, **fc_kwargs)
|
256 |
+
fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)]
|
257 |
+
self.Wqkv._fused = (0, fuse_splits)
|
258 |
+
if self.qk_ln or self.qk_gn:
|
259 |
+
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
260 |
+
norm_size = self.head_dim if qk_gn else d_model
|
261 |
+
self.q_ln = norm_class(norm_size, device=device)
|
262 |
+
if qk_ln:
|
263 |
+
norm_size = self.head_dim * kv_n_heads
|
264 |
+
self.k_ln = norm_class(norm_size, device=device)
|
265 |
+
if self.attn_impl == 'flash':
|
266 |
+
self.attn_fn = flash_attn_fn
|
267 |
+
elif self.attn_impl == 'triton':
|
268 |
+
self.attn_fn = triton_flash_attn_fn
|
269 |
+
elif self.attn_impl == 'torch':
|
270 |
+
self.attn_fn = scaled_multihead_dot_product_attention
|
271 |
+
else:
|
272 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
273 |
+
self.out_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs)
|
274 |
+
self.out_proj._is_residual = True
|
275 |
+
|
276 |
+
def forward(self, x: torch.Tensor, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[dict]=None, is_causal: bool=True, needs_weights: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
|
277 |
+
qkv = self.Wqkv(x)
|
278 |
+
if self.clip_qkv:
|
279 |
+
qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
280 |
+
query, key, value = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2)
|
281 |
+
key_padding_mask = attention_mask
|
282 |
+
if self.qk_ln or self.qk_gn:
|
283 |
+
q_shape, k_shape = (query.shape, key.shape)
|
284 |
+
if self.qk_gn:
|
285 |
+
b, s = query.shape[:2]
|
286 |
+
query = query.view(b, s, self.n_heads, -1)
|
287 |
+
key = key.view(b, s, self.kv_n_heads, -1)
|
288 |
+
dtype = query.dtype
|
289 |
+
query = self.q_ln(query).to(dtype).view(q_shape)
|
290 |
+
key = self.k_ln(key).to(dtype).view(k_shape)
|
291 |
+
if rotary_emb_w_meta_info is not None:
|
292 |
+
rotary_emb = rotary_emb_w_meta_info['rotary_emb']
|
293 |
+
seq_len = rotary_emb_w_meta_info['seq_len']
|
294 |
+
offset_info = rotary_emb_w_meta_info['offset_info']
|
295 |
+
bsz, seqlen = query.shape[:2]
|
296 |
+
query = query.view(bsz, seqlen, -1, self.head_dim)
|
297 |
+
key = key.view(bsz, seqlen, -1, self.head_dim)
|
298 |
+
if rotary_emb_w_meta_info['impl'] == 'dail':
|
299 |
+
value = value.view(bsz, seqlen, -1, self.head_dim)
|
300 |
+
kv = torch.stack([key, value], dim=2)
|
301 |
+
query, kv = rotary_emb(query, kv, seqlen_offset=offset_info, max_seqlen=seq_len)
|
302 |
+
[key, value] = torch.unbind(kv, dim=2)
|
303 |
+
value = value.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
|
304 |
+
elif rotary_emb_w_meta_info['impl'] == 'hf':
|
305 |
+
cos, sin = rotary_emb(value, seq_len)
|
306 |
+
if is_transformers_version_gte('4.36'):
|
307 |
+
query, key = apply_rotary_pos_emb(query, key, cos, sin, offset_info, unsqueeze_dim=2)
|
308 |
+
else:
|
309 |
+
query = query.transpose(1, 2)
|
310 |
+
key = key.transpose(1, 2)
|
311 |
+
query, key = apply_rotary_pos_emb(query, key, cos, sin, offset_info)
|
312 |
+
query = query.transpose(1, 2)
|
313 |
+
key = key.transpose(1, 2)
|
314 |
+
query = query.view(bsz, seqlen, self.d_model)
|
315 |
+
key = key.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
|
316 |
+
extra_attn_kwargs = {}
|
317 |
+
if self.attn_impl == 'flash':
|
318 |
+
key_padding_mask = None
|
319 |
+
extra_attn_kwargs = {'should_repeat_kv_for_gqa': not is_flash_v2_installed(), 'sliding_window_size': self.sliding_window_size, 'alibi_slopes': alibi_slopes, 'flash_attn_padding_info': flash_attn_padding_info}
|
320 |
+
context, attn_weights, past_key_value = self.attn_fn(query, key, value, self.n_heads, self.kv_n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, **extra_attn_kwargs)
|
321 |
+
return (self.out_proj(context), attn_weights, past_key_value)
|
322 |
+
|
323 |
+
class MultiheadAttention(GroupedQueryAttention):
|
324 |
+
"""Multi-head self attention.
|
325 |
+
|
326 |
+
Using torch or triton attention implementation enables user to also use
|
327 |
+
additive bias.
|
328 |
+
"""
|
329 |
+
|
330 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
|
331 |
+
super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size)
|
332 |
+
|
333 |
+
class MultiQueryAttention(GroupedQueryAttention):
|
334 |
+
"""Multi-Query self attention.
|
335 |
+
|
336 |
+
Using torch or triton attention implementation enables user to also use
|
337 |
+
additive bias.
|
338 |
+
"""
|
339 |
+
|
340 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
|
341 |
+
super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size)
|
342 |
+
|
343 |
+
def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, prefix_lm: bool, causal: bool, use_sequence_id: bool) -> Optional[tuple[int, int, int, int]]:
|
344 |
+
if attn_impl == 'flash':
|
345 |
+
return None
|
346 |
+
elif attn_impl in ['torch', 'triton']:
|
347 |
+
if alibi:
|
348 |
+
if (prefix_lm or not causal) or use_sequence_id:
|
349 |
+
return (1, n_heads, seq_len, seq_len)
|
350 |
+
return (1, n_heads, 1, seq_len)
|
351 |
+
elif prefix_lm or use_sequence_id:
|
352 |
+
return (1, 1, seq_len, seq_len)
|
353 |
+
return None
|
354 |
+
else:
|
355 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
356 |
+
|
357 |
+
def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_len: int, causal: bool=False, alibi: bool=False, alibi_bias_max: int=8) -> Optional[torch.Tensor]:
|
358 |
+
if attn_impl == 'flash':
|
359 |
+
return None
|
360 |
+
elif attn_impl in ['torch', 'triton']:
|
361 |
+
if alibi:
|
362 |
+
device, dtype = (attn_bias.device, attn_bias.dtype)
|
363 |
+
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
|
364 |
+
return attn_bias
|
365 |
+
else:
|
366 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
367 |
+
|
368 |
+
def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None, return_1d: bool=False) -> torch.Tensor:
|
369 |
+
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
370 |
+
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
371 |
+
m = m.mul(alibi_bias_max / _n_heads)
|
372 |
+
slopes = 1.0 / torch.pow(2, m)
|
373 |
+
if _n_heads != n_heads:
|
374 |
+
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
375 |
+
if return_1d:
|
376 |
+
return slopes
|
377 |
+
return slopes.view(1, n_heads, 1, 1)
|
378 |
+
|
379 |
+
def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor:
|
380 |
+
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
|
381 |
+
if full:
|
382 |
+
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
|
383 |
+
alibi_bias = alibi_bias.abs().mul(-1)
|
384 |
+
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
385 |
+
alibi_bias = alibi_bias * slopes
|
386 |
+
return alibi_bias.to(dtype=dtype)
|
387 |
+
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, 'grouped_query_attention': GroupedQueryAttention}
|
blocks.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""GPT Blocks used for the GPT Model."""
|
2 |
+
from typing import Any, Dict, Optional, Tuple
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from .attention import ATTN_CLASS_REGISTRY
|
6 |
+
from .ffn import FFN_CLASS_REGISTRY, build_ffn
|
7 |
+
from .norm import NORM_CLASS_REGISTRY
|
8 |
+
try:
|
9 |
+
from flash_attn.bert_padding import unpad_input, pad_input
|
10 |
+
except:
|
11 |
+
unpad_input, pad_input = (None, None)
|
12 |
+
attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'qk_gn': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'sliding_window_size': -1, 'alibi': False, 'alibi_bias_max': 8, 'rope': False, 'rope_theta': 10000, 'rope_impl': 'dail', 'rope_dail_config': {'type': 'original', 'pos_idx_in_fp32': True, 'xpos_scale_base': 512}, 'rope_hf_config': {'type': 'no_scaling', 'factor': 1.0}}
|
13 |
+
|
14 |
+
class MPTBlock(nn.Module):
|
15 |
+
|
16 |
+
def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Optional[Dict]=None, ffn_config: Optional[Dict]=None, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, no_bias: bool=False, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
|
17 |
+
if attn_config is None:
|
18 |
+
attn_config = attn_config_defaults
|
19 |
+
if ffn_config is None:
|
20 |
+
ffn_config = {'ffn_type': 'mptmlp'}
|
21 |
+
del kwargs
|
22 |
+
super().__init__()
|
23 |
+
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
24 |
+
assert isinstance(attn_config['attn_type'], str)
|
25 |
+
attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
|
26 |
+
args_to_exclude_in_attn_class = {'attn_type', 'prefix_lm', 'alibi', 'attn_uses_sequence_id', 'alibi_bias_max', 'rope', 'rope_theta', 'rope_impl', 'rope_dail_config', 'rope_hf_config'}
|
27 |
+
attn_config_subset_for_attn_class = {k: v for k, v in attn_config.items() if k not in args_to_exclude_in_attn_class}
|
28 |
+
self.norm_1 = norm_class(d_model, device=device)
|
29 |
+
self.attn = attn_class(d_model=d_model, n_heads=n_heads, fc_type=fc_type, device=device, **attn_config_subset_for_attn_class, bias=not no_bias)
|
30 |
+
self.norm_2 = None
|
31 |
+
if not getattr(FFN_CLASS_REGISTRY[ffn_config['ffn_type']], '_has_norm', False):
|
32 |
+
self.norm_2 = norm_class(d_model, device=device)
|
33 |
+
self.ffn = build_ffn(d_model=d_model, expansion_ratio=expansion_ratio, device=device, bias=not no_bias, **ffn_config)
|
34 |
+
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
35 |
+
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
36 |
+
self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
|
37 |
+
|
38 |
+
def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[Dict]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True, output_attentions: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
39 |
+
a = self.norm_1(x)
|
40 |
+
b, attn_weights, past_key_value = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=is_causal, needs_weights=output_attentions, alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
|
41 |
+
x = x + self.resid_attn_dropout(b)
|
42 |
+
m = x
|
43 |
+
if self.norm_2 is not None:
|
44 |
+
m = self.norm_2(x)
|
45 |
+
batch_size, seq_len = m.size()[:2]
|
46 |
+
indices = None
|
47 |
+
if not self.use_pad_tok_in_ffn:
|
48 |
+
assert unpad_input is not None
|
49 |
+
m, indices, _, _ = unpad_input(m, attention_mask)
|
50 |
+
n = self.ffn(m)
|
51 |
+
if not self.use_pad_tok_in_ffn:
|
52 |
+
assert pad_input is not None
|
53 |
+
n = pad_input(n, indices, batch_size, seq_len)
|
54 |
+
x = x + self.resid_ffn_dropout(n)
|
55 |
+
return (x, attn_weights, past_key_value)
|
config.json
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/user/shahrukh/models/responder_v2_mpt",
|
3 |
+
"architectures": [
|
4 |
+
"LlavaMPTForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_config": {
|
7 |
+
"alibi": true,
|
8 |
+
"alibi_bias_max": 8,
|
9 |
+
"attn_impl": "flash",
|
10 |
+
"attn_pdrop": 0.0,
|
11 |
+
"attn_type": "grouped_query_attention",
|
12 |
+
"attn_uses_sequence_id": false,
|
13 |
+
"clip_qkv": 6,
|
14 |
+
"kv_n_heads": 8,
|
15 |
+
"prefix_lm": false,
|
16 |
+
"qk_gn": false,
|
17 |
+
"qk_ln": false,
|
18 |
+
"rope": false,
|
19 |
+
"rope_dail_config": {
|
20 |
+
"pos_idx_in_fp32": true,
|
21 |
+
"type": "original",
|
22 |
+
"xpos_scale_base": 512
|
23 |
+
},
|
24 |
+
"rope_hf_config": {
|
25 |
+
"factor": 1.0,
|
26 |
+
"type": "no_scaling"
|
27 |
+
},
|
28 |
+
"rope_impl": "dail",
|
29 |
+
"rope_theta": 10000,
|
30 |
+
"sliding_window_size": -1,
|
31 |
+
"softmax_scale": null
|
32 |
+
},
|
33 |
+
"auto_map": {
|
34 |
+
"AutoConfig": "configuration_mpt.MPTConfig",
|
35 |
+
"AutoModelForCausalLM": "modeling_mpt.MPTForCausalLM"
|
36 |
+
},
|
37 |
+
"d_model": 4608,
|
38 |
+
"emb_pdrop": 0.0,
|
39 |
+
"embedding_fraction": 1.0,
|
40 |
+
"expansion_ratio": 4,
|
41 |
+
"fc_type": "torch",
|
42 |
+
"ffn_config": {
|
43 |
+
"fc_type": "torch",
|
44 |
+
"ffn_type": "mptmlp"
|
45 |
+
},
|
46 |
+
"freeze_mm_mlp_adapter": false,
|
47 |
+
"hidden_size": 4608,
|
48 |
+
"image_aspect_ratio": "pad",
|
49 |
+
"image_grid_pinpoints": null,
|
50 |
+
"init_config": {
|
51 |
+
"emb_init_std": null,
|
52 |
+
"emb_init_uniform_lim": null,
|
53 |
+
"fan_mode": "fan_in",
|
54 |
+
"init_div_is_residual": true,
|
55 |
+
"init_gain": 0.0,
|
56 |
+
"init_nonlinearity": "relu",
|
57 |
+
"init_std": null,
|
58 |
+
"name": "kaiming_normal_"
|
59 |
+
},
|
60 |
+
"init_device": "cpu",
|
61 |
+
"learned_pos_emb": false,
|
62 |
+
"logit_scale": null,
|
63 |
+
"max_seq_len": 4096,
|
64 |
+
"mm_hidden_size": 1152,
|
65 |
+
"mm_projector_type": "mlp2x_gelu",
|
66 |
+
"mm_use_im_patch_token": false,
|
67 |
+
"mm_use_im_start_end": false,
|
68 |
+
"mm_vision_select_feature": "patch",
|
69 |
+
"mm_vision_select_layer": -2,
|
70 |
+
"mm_vision_tower": "google/siglip-so400m-patch14-384",
|
71 |
+
"model_type": "mpt",
|
72 |
+
"n_heads": 48,
|
73 |
+
"n_layers": 32,
|
74 |
+
"no_bias": true,
|
75 |
+
"norm_type": "low_precision_layernorm",
|
76 |
+
"resid_pdrop": 0.0,
|
77 |
+
"torch_dtype": "bfloat16",
|
78 |
+
"transformers_version": "4.37.0",
|
79 |
+
"tune_mm_mlp_adapter": false,
|
80 |
+
"use_cache": true,
|
81 |
+
"use_mm_proj": true,
|
82 |
+
"use_pad_tok_in_ffn": true,
|
83 |
+
"vocab_size": 70400
|
84 |
+
}
|
configuration_mpt.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A HuggingFace-style model configuration."""
|
2 |
+
import warnings
|
3 |
+
from typing import Any, Dict, Optional, Union
|
4 |
+
from transformers import PretrainedConfig
|
5 |
+
from .attention import check_alibi_support, is_flash_v1_installed, is_flash_v2_installed
|
6 |
+
from .blocks import attn_config_defaults
|
7 |
+
from .fc import FC_CLASS_REGISTRY
|
8 |
+
from .norm import LPLayerNorm
|
9 |
+
from .ffn import FFN_CLASS_REGISTRY
|
10 |
+
from .warnings import VersionedDeprecationWarning
|
11 |
+
ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
|
12 |
+
init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
|
13 |
+
|
14 |
+
class MPTConfig(PretrainedConfig):
|
15 |
+
model_type = 'mpt'
|
16 |
+
|
17 |
+
def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: Union[int, float]=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch', tie_word_embeddings: bool=True, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
|
18 |
+
"""The MPT configuration class.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
d_model (int): The size of the embedding dimension of the model.
|
22 |
+
n_heads (int): The number of attention heads.
|
23 |
+
n_layers (int): The number of layers in the model.
|
24 |
+
expansion_ratio (Union[int, float]): The ratio of the up/down scale in the ffn.
|
25 |
+
max_seq_len (int): The maximum sequence length of the model.
|
26 |
+
vocab_size (int): The size of the vocabulary.
|
27 |
+
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
28 |
+
emb_pdrop (float): The dropout probability for the embedding layer.
|
29 |
+
learned_pos_emb (bool): Whether to use learned positional embeddings
|
30 |
+
attn_config (Dict): A dictionary used to configure the model's attention module:
|
31 |
+
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
|
32 |
+
attn_pdrop (float): The dropout probability for the attention layers.
|
33 |
+
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
34 |
+
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
35 |
+
qk_gn (bool): Whether to apply group normalization to the queries and keys in the attention layer.
|
36 |
+
clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
|
37 |
+
this value.
|
38 |
+
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
|
39 |
+
use the default scale of ``1/sqrt(d_keys)``.
|
40 |
+
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
|
41 |
+
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
|
42 |
+
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
|
43 |
+
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
|
44 |
+
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
|
45 |
+
which sub-sequence each token belongs to.
|
46 |
+
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
47 |
+
sliding_window_size (int): Window size for sliding window local attention. Defaults to -1, which means no sliding window. Query at position i will only attend to keys between [i + seqlen_k - seqlen_q - window_size, i + seqlen_k - seqlen_q + window_size] inclusive. Only works for flash attention v2.3.0 or higher.
|
48 |
+
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
49 |
+
alibi_bias_max (int): The maximum value of the alibi bias.
|
50 |
+
rope (bool): Whether to use rotary positional embeddings.
|
51 |
+
rope_theta (int): The base frequency for rope.
|
52 |
+
rope_impl (str): The implementation of rope to use. One of 'hf' (to use the implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py) or 'dail' (to use the implementation from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py).
|
53 |
+
rope_dail_config (Dict): The configuration for the dail implementation of rope.
|
54 |
+
type (str): The type of rotary position embedding to use. Options: 'original' (for https://arxiv.org/pdf/2104.09864.pdf), 'xpos' (for https://arxiv.org/pdf/2212.10554.pdf).
|
55 |
+
pos_idx_in_fp32 (bool): If True, the position indices [0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision. A consequence could be, for example, that bf16 rounds position 1995 to 2000, which leads to them having the same positional embedding.
|
56 |
+
xpos_scale_base (float): The scale base for XPos (if using XPos).
|
57 |
+
rope_hf_config (Dict): A dictionary used to configure rope's scaling behavior (when scaling beyond the training length).
|
58 |
+
type (str): Can be one of 'no_scaling', 'linear', or 'dynamic'. 'no_scaling' uses the default implementation for rotary embeddings, 'linear' uses linear scaling as proposed by the Reddit user /u/kaiokendev, and 'dynamic' uses Dynamic NTK scaling as proposed by the Reddit users /u/bloc97 and /u/emozilla.
|
59 |
+
factor (float): Scaling factor to use if using 'linear' or 'dynamic' as rope_scaling.type.
|
60 |
+
kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
|
61 |
+
ffn_config (Dict): A dictionary used to configure the model's ffn module:
|
62 |
+
ffn_type (str): type of ffn to use. Options: mptmlp, mptglu, te_ln_mlp
|
63 |
+
init_device (str): The device to use for parameter initialization.
|
64 |
+
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
65 |
+
no_bias (bool): Whether to use bias in all layers.
|
66 |
+
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
67 |
+
norm_type (str): choose type of norm to use
|
68 |
+
use_cache (bool): Whether or not the model should return the last key/values attentions
|
69 |
+
init_config (Dict): A dictionary used to configure the model initialization:
|
70 |
+
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
|
71 |
+
'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
|
72 |
+
'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
|
73 |
+
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
|
74 |
+
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
|
75 |
+
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
|
76 |
+
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
|
77 |
+
init_std (float): The standard deviation of the normal distribution used to initialize the model,
|
78 |
+
if using the baseline_ parameter initialization scheme.
|
79 |
+
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
|
80 |
+
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
|
81 |
+
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
82 |
+
---
|
83 |
+
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
|
84 |
+
fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
|
85 |
+
tie_word_embeddings (bool): Whether to tie the input embedding and output layers.
|
86 |
+
use_pad_tok_in_ffn (bool): Whether to forward the pad token in the feedforward networks.
|
87 |
+
"""
|
88 |
+
self.d_model = d_model
|
89 |
+
self.n_heads = n_heads
|
90 |
+
self.n_layers = n_layers
|
91 |
+
self.expansion_ratio = expansion_ratio
|
92 |
+
self.max_seq_len = max_seq_len
|
93 |
+
self.vocab_size = vocab_size
|
94 |
+
self.resid_pdrop = resid_pdrop
|
95 |
+
self.emb_pdrop = emb_pdrop
|
96 |
+
self.learned_pos_emb = learned_pos_emb
|
97 |
+
self.attn_config = attn_config
|
98 |
+
self.ffn_config = ffn_config
|
99 |
+
self.init_device = init_device
|
100 |
+
self.logit_scale = logit_scale
|
101 |
+
self.no_bias = no_bias
|
102 |
+
self.embedding_fraction = embedding_fraction
|
103 |
+
self.norm_type = norm_type
|
104 |
+
self.use_cache = use_cache
|
105 |
+
self.init_config = init_config
|
106 |
+
self.fc_type = fc_type
|
107 |
+
self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
|
108 |
+
if 'name' in kwargs:
|
109 |
+
del kwargs['name']
|
110 |
+
if 'loss_fn' in kwargs:
|
111 |
+
del kwargs['loss_fn']
|
112 |
+
if self.attn_config.get('alibi', False) or self.attn_config.get('rope', False):
|
113 |
+
self.learned_pos_emb = False
|
114 |
+
warnings.warn(f'alibi or rope is turned on, setting `learned_pos_emb` to `False.`')
|
115 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
116 |
+
self._validate_config()
|
117 |
+
|
118 |
+
def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
|
119 |
+
for k, v in config_defaults.items():
|
120 |
+
if k not in config:
|
121 |
+
config[k] = v
|
122 |
+
elif isinstance(v, dict):
|
123 |
+
config[k] = self._set_config_defaults(config[k] if config[k] is not None else {}, v)
|
124 |
+
return config
|
125 |
+
|
126 |
+
def _validate_config(self) -> None:
|
127 |
+
self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
|
128 |
+
self.ffn_config = self._set_config_defaults(self.ffn_config, ffn_config_defaults)
|
129 |
+
self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
|
130 |
+
if self.d_model % self.n_heads != 0:
|
131 |
+
raise ValueError('d_model must be divisible by n_heads')
|
132 |
+
if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
|
133 |
+
raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
|
134 |
+
if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
|
135 |
+
raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
|
136 |
+
if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
137 |
+
raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
|
138 |
+
if self.attn_config['attn_impl'] == 'flash' and is_flash_v1_installed():
|
139 |
+
warnings.warn(VersionedDeprecationWarning('Support for Flash Attention v1 is deprecated. Please upgrade to Flash Attention v2.4.2. To install Flash Attention v2.4.2, please run `pip install -e ".[gpu-flash2]"` from the root directory of the llm-foundry repository.', remove_version='0.6.0'))
|
140 |
+
if self.attn_config['attn_impl'] == 'triton' and (not self.attn_config['prefix_lm']):
|
141 |
+
warnings.warn(UserWarning('If not using a Prefix Language Model, we recommend setting "attn_impl" to "flash" instead of "triton".'))
|
142 |
+
# if self.attn_config['alibi'] and (not check_alibi_support(self.attn_config['attn_impl'])):
|
143 |
+
# raise NotImplementedError('alibi only implemented with torch, triton, and flash (v2.4.2 or higher) attention.')
|
144 |
+
if self.attn_config['attn_uses_sequence_id'] and (not (self.attn_config['attn_impl'] in ['torch', 'triton'] or (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.1.2')))):
|
145 |
+
raise NotImplementedError('attn_uses_sequence_id only implemented with torch, triton, and flash (v2.1.2 or higher) attention.')
|
146 |
+
if self.attn_config['rope'] and self.attn_config['rope_impl'] not in ['dail', 'hf']:
|
147 |
+
raise ValueError('If rope is being used then rope_impl should be either "dail", or "hf".')
|
148 |
+
if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'hf' and (self.attn_config['rope_hf_config']['type'] not in ['no_scaling', 'linear', 'dynamic']):
|
149 |
+
raise ValueError('If using hf implementation of rope, the type should be one of "no_scaling", "linear" or "dynamic".')
|
150 |
+
if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'dail':
|
151 |
+
if self.attn_config['rope_dail_config']['type'] not in ['original', 'xpos']:
|
152 |
+
raise ValueError('If using the dail implementation of rope, the type should be one of "original" or "xpos".')
|
153 |
+
if not is_flash_v2_installed(v2_version='2.0.1'):
|
154 |
+
raise ImportError('If using the dail implementation of rope, the flash_attn library v2.0.1 or higher must be installed. Please check the instructions at https://github.com/mosaicml/llm-foundry/blob/main/TUTORIAL.md#what-kinds-of-positional-embeddings-does-llm-foundry-support')
|
155 |
+
if self.attn_config['sliding_window_size'] != -1 and (not (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.3.0'))):
|
156 |
+
raise NotImplementedError('sliding window only implemented with flash attention v2.3.0 or higher.')
|
157 |
+
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
158 |
+
raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
|
159 |
+
if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
|
160 |
+
raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
161 |
+
if self.init_config.get('name', None) is None:
|
162 |
+
raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
|
163 |
+
if not (self.learned_pos_emb or self.attn_config['alibi'] or self.attn_config['rope']):
|
164 |
+
warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi or rope.')
|
165 |
+
if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
|
166 |
+
try:
|
167 |
+
import transformer_engine.pytorch as te
|
168 |
+
del te
|
169 |
+
except:
|
170 |
+
raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
|
171 |
+
if self.ffn_config['ffn_type'] == 'mptgeglu':
|
172 |
+
raise ValueError('API CHANGE: `ffn_type=="mptgeglu"` changed to `ffn_type=="mptglu"`. ' + 'See [#829](https://github.com/mosaicml/llm-foundry/pull/829) for details.')
|
173 |
+
elif self.ffn_config['ffn_type'] in ['mptmlp', 'mptglu']:
|
174 |
+
self.ffn_config['fc_type'] = self.fc_type
|
175 |
+
elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
|
176 |
+
self.ffn_config['bias'] = not self.no_bias
|
177 |
+
if 'ffn_act_fn' in self.ffn_config.keys():
|
178 |
+
raise ValueError(f'Transformer Engine block does not support custom activation functions.')
|
179 |
+
if not self.use_pad_tok_in_ffn:
|
180 |
+
try:
|
181 |
+
from flash_attn.bert_padding import unpad_input, pad_input
|
182 |
+
except:
|
183 |
+
raise ImportError('In order to set `use_pad_tok_in_ffn=False`, please install flash-attn==1.0.9 or flash-attn==2.3.6')
|
fc.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
FC_CLASS_REGISTRY = {'torch': nn.Linear}
|
3 |
+
try:
|
4 |
+
import transformer_engine.pytorch as te
|
5 |
+
FC_CLASS_REGISTRY['te'] = te.Linear
|
6 |
+
except:
|
7 |
+
pass
|
ffn.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MPT Blocks used for the MPT Model."""
|
2 |
+
import logging
|
3 |
+
from copy import deepcopy
|
4 |
+
from functools import partial
|
5 |
+
from typing import Any, Callable, Optional, Union
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from .fc import FC_CLASS_REGISTRY
|
9 |
+
try:
|
10 |
+
import transformer_engine.pytorch as te
|
11 |
+
except:
|
12 |
+
te = None
|
13 |
+
log = logging.getLogger(__name__)
|
14 |
+
_FFN_ACT_FN_DEFAULT = {'name': 'gelu', 'approximate': 'none'}
|
15 |
+
|
16 |
+
def resolve_ffn_act_fn(config: Optional[dict]=None) -> Callable[[torch.Tensor], torch.Tensor]:
|
17 |
+
"""Resolve the activation function for the feed-forward network.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
config (Optional[dict]): The configuration dictionary for the activation function.
|
21 |
+
The dict config must specify the 'name' of a torch.nn.functional activation
|
22 |
+
function. All of other key values pairs are bound to the function as a partial.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
Callable[[torch.Tensor], torch.Tensor]: The activation function.
|
26 |
+
"""
|
27 |
+
if config is None:
|
28 |
+
config = _FFN_ACT_FN_DEFAULT
|
29 |
+
config = deepcopy(config)
|
30 |
+
name = config.pop('name')
|
31 |
+
if not hasattr(torch.nn.functional, name):
|
32 |
+
raise ValueError(f'Unrecognised activation function name ({name}).')
|
33 |
+
act = getattr(torch.nn.functional, name)
|
34 |
+
return partial(act, **config)
|
35 |
+
_DEFAULT_ACT_FN = resolve_ffn_act_fn(_FFN_ACT_FN_DEFAULT)
|
36 |
+
|
37 |
+
def resolve_ffn_hidden_size(d_model: int, expansion_ratio: Union[int, float], ffn_hidden_size: Optional[int]=None) -> int:
|
38 |
+
"""Resolve the hidden size of the feed-forward network.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
d_model (int): The dimension of the input and output of the feed-forward network.
|
42 |
+
expansion_ratio (Union[int, float]): The expansion ratio of the feed-forward network.
|
43 |
+
ffn_hidden_size (Optional[int]): The hidden size of the feed-forward network.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
int: The hidden size of the feed-forward network.
|
47 |
+
"""
|
48 |
+
if ffn_hidden_size is not None:
|
49 |
+
log.info(f'`expansion_ratio` (={expansion_ratio}) ignored when `ffn_hidden_size` (={ffn_hidden_size}) is specified.')
|
50 |
+
else:
|
51 |
+
ffn_hidden_size = int(d_model * expansion_ratio)
|
52 |
+
if ffn_hidden_size != d_model * expansion_ratio:
|
53 |
+
raise ValueError(f'`d_model * expansion_ratio` must be an integer (d_model={d_model!r}; expansion_ratio={expansion_ratio!r}; d_model * expansion_ratio={d_model * expansion_ratio!r}).')
|
54 |
+
return ffn_hidden_size
|
55 |
+
|
56 |
+
class MPTMLP(nn.Module):
|
57 |
+
|
58 |
+
def __init__(self, d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, act_fn: Callable[[torch.Tensor], torch.Tensor]=_DEFAULT_ACT_FN, device: Optional[str]=None, bias: bool=True):
|
59 |
+
super().__init__()
|
60 |
+
ffn_hidden_size = resolve_ffn_hidden_size(d_model, expansion_ratio, ffn_hidden_size)
|
61 |
+
self.fc_kwargs: dict[str, Any] = {'bias': bias}
|
62 |
+
self.fc_kwargs['device'] = device
|
63 |
+
self.up_proj = FC_CLASS_REGISTRY[fc_type](d_model, ffn_hidden_size, **self.fc_kwargs)
|
64 |
+
self.act = act_fn
|
65 |
+
self.down_proj = FC_CLASS_REGISTRY[fc_type](ffn_hidden_size, d_model, **self.fc_kwargs)
|
66 |
+
self.down_proj._is_residual = True
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
69 |
+
return self.down_proj(self.act(self.up_proj(x)))
|
70 |
+
|
71 |
+
class MPTGLU(MPTMLP):
|
72 |
+
|
73 |
+
def __init__(self, d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, act_fn: Callable[[torch.Tensor], torch.Tensor]=_DEFAULT_ACT_FN, device: Optional[str]=None, bias: bool=True):
|
74 |
+
super().__init__(d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, ffn_hidden_size=ffn_hidden_size, act_fn=act_fn, device=device, bias=bias)
|
75 |
+
self.gate_proj = FC_CLASS_REGISTRY[fc_type](d_model, self.up_proj.out_features, **self.fc_kwargs)
|
76 |
+
|
77 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
78 |
+
return self.down_proj(self.act(self.gate_proj(x)) * self.up_proj(x))
|
79 |
+
FFN_CLASS_REGISTRY = {'mptmlp': MPTMLP, 'mptglu': MPTGLU}
|
80 |
+
if te is not None:
|
81 |
+
te.LayerNormMLP._has_norm = True
|
82 |
+
FFN_CLASS_REGISTRY['te_ln_mlp'] = te.LayerNormMLP
|
83 |
+
|
84 |
+
def build_ffn(d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, ffn_act_fn: Optional[dict]=None, device: Optional[str]=None, bias: bool=True, **kwargs: Any) -> nn.Module:
|
85 |
+
ffn_type = kwargs.pop('ffn_type')
|
86 |
+
if ffn_type in ['mptmlp', 'mptglu']:
|
87 |
+
if len(kwargs) > 0:
|
88 |
+
raise ValueError(f'MPTMLP (or MPTGLU) got an unexpected keyword argument: {kwargs}')
|
89 |
+
return FFN_CLASS_REGISTRY[ffn_type](d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, act_fn=resolve_ffn_act_fn(ffn_act_fn), ffn_hidden_size=ffn_hidden_size, device=device, bias=bias)
|
90 |
+
elif ffn_type == 'te_ln_mlp':
|
91 |
+
assert te is not None
|
92 |
+
ffn_hidden_size = resolve_ffn_hidden_size(d_model, expansion_ratio, ffn_hidden_size)
|
93 |
+
if ffn_act_fn is not None:
|
94 |
+
raise ValueError(f'Transformer Engine block does not support custom activation functions.')
|
95 |
+
return te.LayerNormMLP(hidden_size=d_model, ffn_hidden_size=ffn_hidden_size, bias=bias, **kwargs)
|
96 |
+
raise ValueError(f'ffn_type={ffn_type!r} not recognized.')
|
flash_attn_triton.py
ADDED
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
|
3 |
+
update imports to use 'triton_pre_mlir'
|
4 |
+
|
5 |
+
*Experimental* implementation of FlashAttention in Triton.
|
6 |
+
Tested with triton==2.0.0.dev20221202.
|
7 |
+
Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
|
8 |
+
other than 64:
|
9 |
+
https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
|
10 |
+
We'll update this implementation with the new Triton backend once this is fixed.
|
11 |
+
|
12 |
+
We use the FlashAttention implementation from Phil Tillet a starting point.
|
13 |
+
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
14 |
+
|
15 |
+
Changes:
|
16 |
+
- Implement both causal and non-causal attention.
|
17 |
+
- Implement both self-attention and cross-attention.
|
18 |
+
- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
|
19 |
+
- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
|
20 |
+
- Support attention bias.
|
21 |
+
- Speed up the forward pass a bit, and only store the LSE instead of m and l.
|
22 |
+
- Make the backward for d=128 much faster by reducing register spilling.
|
23 |
+
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
|
24 |
+
small batch size * nheads.
|
25 |
+
|
26 |
+
Caution:
|
27 |
+
- This is an *experimental* implementation. The forward pass should be quite robust but
|
28 |
+
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
|
29 |
+
- This implementation has only been tested on A100.
|
30 |
+
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
31 |
+
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
32 |
+
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
33 |
+
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
34 |
+
that there are none left for other head dimensions.
|
35 |
+
|
36 |
+
Differences between this Triton version and the CUDA version:
|
37 |
+
- Triton version doesn't support dropout.
|
38 |
+
- Triton forward is generally faster than CUDA forward, while Triton backward is
|
39 |
+
generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
|
40 |
+
than CUDA forward + backward.
|
41 |
+
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
|
42 |
+
- Triton version supports attention bias, while CUDA version doesn't.
|
43 |
+
"""
|
44 |
+
import math
|
45 |
+
import torch
|
46 |
+
import triton_pre_mlir as triton
|
47 |
+
import triton_pre_mlir.language as tl
|
48 |
+
|
49 |
+
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
|
50 |
+
@triton.jit
|
51 |
+
def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
52 |
+
start_m = tl.program_id(0)
|
53 |
+
off_hb = tl.program_id(1)
|
54 |
+
off_b = off_hb // nheads
|
55 |
+
off_h = off_hb % nheads
|
56 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
57 |
+
offs_n = tl.arange(0, BLOCK_N)
|
58 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
59 |
+
q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
|
60 |
+
k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
61 |
+
v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
62 |
+
if BIAS_TYPE == 'vector':
|
63 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
64 |
+
elif BIAS_TYPE == 'matrix':
|
65 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
|
66 |
+
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
67 |
+
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
|
68 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
|
69 |
+
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
70 |
+
if EVEN_M & EVEN_N:
|
71 |
+
if EVEN_HEADDIM:
|
72 |
+
q = tl.load(q_ptrs)
|
73 |
+
else:
|
74 |
+
q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
75 |
+
elif EVEN_HEADDIM:
|
76 |
+
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
77 |
+
else:
|
78 |
+
q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
79 |
+
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
80 |
+
for start_n in range(0, end_n, BLOCK_N):
|
81 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
82 |
+
if EVEN_N & EVEN_M:
|
83 |
+
if EVEN_HEADDIM:
|
84 |
+
k = tl.load(k_ptrs + start_n * stride_kn)
|
85 |
+
else:
|
86 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
|
87 |
+
elif EVEN_HEADDIM:
|
88 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
|
89 |
+
else:
|
90 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
91 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
92 |
+
qk += tl.dot(q, k, trans_b=True)
|
93 |
+
if not EVEN_N:
|
94 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float('-inf'))
|
95 |
+
if IS_CAUSAL:
|
96 |
+
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float('-inf'))
|
97 |
+
if BIAS_TYPE != 'none':
|
98 |
+
if BIAS_TYPE == 'vector':
|
99 |
+
if EVEN_N:
|
100 |
+
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
101 |
+
else:
|
102 |
+
bias = tl.load(b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0).to(tl.float32)
|
103 |
+
bias = bias[None, :]
|
104 |
+
elif BIAS_TYPE == 'matrix':
|
105 |
+
if EVEN_M & EVEN_N:
|
106 |
+
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
107 |
+
else:
|
108 |
+
bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32)
|
109 |
+
qk = qk * softmax_scale + bias
|
110 |
+
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
|
111 |
+
p = tl.exp(qk - m_ij[:, None])
|
112 |
+
else:
|
113 |
+
m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
|
114 |
+
p = tl.exp(qk * softmax_scale - m_ij[:, None])
|
115 |
+
l_ij = tl.sum(p, 1)
|
116 |
+
acc_o_scale = tl.exp(m_i - m_ij)
|
117 |
+
tl.store(t_ptrs, acc_o_scale)
|
118 |
+
acc_o_scale = tl.load(t_ptrs)
|
119 |
+
acc_o = acc_o * acc_o_scale[:, None]
|
120 |
+
if EVEN_N & EVEN_M:
|
121 |
+
if EVEN_HEADDIM:
|
122 |
+
v = tl.load(v_ptrs + start_n * stride_vn)
|
123 |
+
else:
|
124 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
|
125 |
+
elif EVEN_HEADDIM:
|
126 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
|
127 |
+
else:
|
128 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
129 |
+
p = p.to(v.dtype)
|
130 |
+
acc_o += tl.dot(p, v)
|
131 |
+
m_i = m_ij
|
132 |
+
l_i_new = tl.exp(lse_i - m_ij) + l_ij
|
133 |
+
lse_i = m_ij + tl.log(l_i_new)
|
134 |
+
o_scale = tl.exp(m_i - lse_i)
|
135 |
+
tl.store(t_ptrs, o_scale)
|
136 |
+
o_scale = tl.load(t_ptrs)
|
137 |
+
acc_o = acc_o * o_scale[:, None]
|
138 |
+
start_m = tl.program_id(0)
|
139 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
140 |
+
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
141 |
+
tl.store(lse_ptrs, lse_i)
|
142 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
143 |
+
out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
|
144 |
+
if EVEN_M:
|
145 |
+
if EVEN_HEADDIM:
|
146 |
+
tl.store(out_ptrs, acc_o)
|
147 |
+
else:
|
148 |
+
tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
|
149 |
+
elif EVEN_HEADDIM:
|
150 |
+
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
151 |
+
else:
|
152 |
+
tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
153 |
+
|
154 |
+
@triton.jit
|
155 |
+
def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr):
|
156 |
+
start_m = tl.program_id(0)
|
157 |
+
off_hb = tl.program_id(1)
|
158 |
+
off_b = off_hb // nheads
|
159 |
+
off_h = off_hb % nheads
|
160 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
161 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
162 |
+
o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
|
163 |
+
do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
|
164 |
+
delta = tl.sum(o * do, axis=1)
|
165 |
+
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
166 |
+
|
167 |
+
@triton.jit
|
168 |
+
def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr):
|
169 |
+
if EVEN_N & EVEN_M:
|
170 |
+
if EVEN_HEADDIM:
|
171 |
+
tl.store(dv_ptrs, dv)
|
172 |
+
tl.store(dk_ptrs, dk)
|
173 |
+
else:
|
174 |
+
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
175 |
+
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
176 |
+
elif EVEN_HEADDIM:
|
177 |
+
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
178 |
+
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
179 |
+
else:
|
180 |
+
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
181 |
+
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
182 |
+
|
183 |
+
@triton.jit
|
184 |
+
def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
185 |
+
begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
|
186 |
+
offs_qm = begin_m + tl.arange(0, BLOCK_M)
|
187 |
+
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
188 |
+
offs_m = tl.arange(0, BLOCK_M)
|
189 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
190 |
+
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
|
191 |
+
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
192 |
+
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
193 |
+
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
|
194 |
+
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
|
195 |
+
if BIAS_TYPE == 'vector':
|
196 |
+
b_ptrs = Bias + offs_n
|
197 |
+
elif BIAS_TYPE == 'matrix':
|
198 |
+
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
199 |
+
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
200 |
+
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
201 |
+
if begin_m >= seqlen_q:
|
202 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
203 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
204 |
+
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
|
205 |
+
return
|
206 |
+
if EVEN_N & EVEN_M:
|
207 |
+
if EVEN_HEADDIM:
|
208 |
+
k = tl.load(k_ptrs)
|
209 |
+
v = tl.load(v_ptrs)
|
210 |
+
else:
|
211 |
+
k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
212 |
+
v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
213 |
+
elif EVEN_HEADDIM:
|
214 |
+
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
215 |
+
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
216 |
+
else:
|
217 |
+
k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
218 |
+
v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
219 |
+
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
220 |
+
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
|
221 |
+
start_m = tl.multiple_of(start_m, BLOCK_M)
|
222 |
+
offs_m_curr = start_m + offs_m
|
223 |
+
if EVEN_M & EVEN_HEADDIM:
|
224 |
+
q = tl.load(q_ptrs)
|
225 |
+
elif EVEN_HEADDIM:
|
226 |
+
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
227 |
+
else:
|
228 |
+
q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
229 |
+
qk = tl.dot(q, k, trans_b=True)
|
230 |
+
if not EVEN_N:
|
231 |
+
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf'))
|
232 |
+
if IS_CAUSAL:
|
233 |
+
qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float('-inf'))
|
234 |
+
if BIAS_TYPE != 'none':
|
235 |
+
tl.debug_barrier()
|
236 |
+
if BIAS_TYPE == 'vector':
|
237 |
+
if EVEN_N:
|
238 |
+
bias = tl.load(b_ptrs).to(tl.float32)
|
239 |
+
else:
|
240 |
+
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
|
241 |
+
bias = bias[None, :]
|
242 |
+
elif BIAS_TYPE == 'matrix':
|
243 |
+
if EVEN_M & EVEN_N:
|
244 |
+
bias = tl.load(b_ptrs).to(tl.float32)
|
245 |
+
else:
|
246 |
+
bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32)
|
247 |
+
qk = qk * softmax_scale + bias
|
248 |
+
if not EVEN_M & EVEN_HEADDIM:
|
249 |
+
tl.debug_barrier()
|
250 |
+
lse_i = tl.load(LSE + offs_m_curr)
|
251 |
+
if BIAS_TYPE == 'none':
|
252 |
+
p = tl.exp(qk * softmax_scale - lse_i[:, None])
|
253 |
+
else:
|
254 |
+
p = tl.exp(qk - lse_i[:, None])
|
255 |
+
if EVEN_M & EVEN_HEADDIM:
|
256 |
+
do = tl.load(do_ptrs)
|
257 |
+
else:
|
258 |
+
do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
259 |
+
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
|
260 |
+
if not EVEN_M & EVEN_HEADDIM:
|
261 |
+
tl.debug_barrier()
|
262 |
+
dp = tl.dot(do, v, trans_b=True)
|
263 |
+
if not EVEN_HEADDIM:
|
264 |
+
tl.debug_barrier()
|
265 |
+
Di = tl.load(D + offs_m_curr)
|
266 |
+
ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
|
267 |
+
dk += tl.dot(ds, q, trans_a=True)
|
268 |
+
if not EVEN_M & EVEN_HEADDIM:
|
269 |
+
tl.debug_barrier()
|
270 |
+
if not ATOMIC_ADD:
|
271 |
+
if EVEN_M & EVEN_HEADDIM:
|
272 |
+
dq = tl.load(dq_ptrs, eviction_policy='evict_last')
|
273 |
+
dq += tl.dot(ds, k)
|
274 |
+
tl.store(dq_ptrs, dq, eviction_policy='evict_last')
|
275 |
+
elif EVEN_HEADDIM:
|
276 |
+
dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy='evict_last')
|
277 |
+
dq += tl.dot(ds, k)
|
278 |
+
tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy='evict_last')
|
279 |
+
else:
|
280 |
+
dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy='evict_last')
|
281 |
+
dq += tl.dot(ds, k)
|
282 |
+
tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy='evict_last')
|
283 |
+
else:
|
284 |
+
dq = tl.dot(ds, k)
|
285 |
+
if EVEN_M & EVEN_HEADDIM:
|
286 |
+
tl.atomic_add(dq_ptrs, dq)
|
287 |
+
elif EVEN_HEADDIM:
|
288 |
+
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
|
289 |
+
else:
|
290 |
+
tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
291 |
+
dq_ptrs += BLOCK_M * stride_dqm
|
292 |
+
q_ptrs += BLOCK_M * stride_qm
|
293 |
+
do_ptrs += BLOCK_M * stride_dom
|
294 |
+
if BIAS_TYPE == 'matrix':
|
295 |
+
b_ptrs += BLOCK_M * stride_bm
|
296 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
297 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
298 |
+
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
|
299 |
+
|
300 |
+
def init_to_zero(name):
|
301 |
+
return lambda nargs: nargs[name].zero_()
|
302 |
+
|
303 |
+
@triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'])
|
304 |
+
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
|
305 |
+
@triton.jit
|
306 |
+
def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
307 |
+
off_hb = tl.program_id(1)
|
308 |
+
off_b = off_hb // nheads
|
309 |
+
off_h = off_hb % nheads
|
310 |
+
Q += off_b * stride_qb + off_h * stride_qh
|
311 |
+
K += off_b * stride_kb + off_h * stride_kh
|
312 |
+
V += off_b * stride_vb + off_h * stride_vh
|
313 |
+
DO += off_b * stride_dob + off_h * stride_doh
|
314 |
+
DQ += off_b * stride_dqb + off_h * stride_dqh
|
315 |
+
DK += off_b * stride_dkb + off_h * stride_dkh
|
316 |
+
DV += off_b * stride_dvb + off_h * stride_dvh
|
317 |
+
if BIAS_TYPE != 'none':
|
318 |
+
Bias += off_b * stride_bb + off_h * stride_bh
|
319 |
+
D += off_hb * seqlen_q_rounded
|
320 |
+
LSE += off_hb * seqlen_q_rounded
|
321 |
+
if not SEQUENCE_PARALLEL:
|
322 |
+
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
323 |
+
for start_n in range(0, num_block_n):
|
324 |
+
_bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
|
325 |
+
else:
|
326 |
+
start_n = tl.program_id(0)
|
327 |
+
_bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
|
328 |
+
|
329 |
+
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
330 |
+
batch, seqlen_q, nheads, d = q.shape
|
331 |
+
_, seqlen_k, _, _ = k.shape
|
332 |
+
assert k.shape == (batch, seqlen_k, nheads, d)
|
333 |
+
assert v.shape == (batch, seqlen_k, nheads, d)
|
334 |
+
assert d <= 128, 'FlashAttention only support head dimensions up to 128'
|
335 |
+
assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
|
336 |
+
assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
|
337 |
+
assert q.is_cuda and k.is_cuda and v.is_cuda
|
338 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
339 |
+
has_bias = bias is not None
|
340 |
+
bias_type = 'none'
|
341 |
+
if has_bias:
|
342 |
+
assert bias.dtype in [q.dtype, torch.float]
|
343 |
+
assert bias.is_cuda
|
344 |
+
assert bias.dim() == 4
|
345 |
+
if bias.stride(-1) != 1:
|
346 |
+
bias = bias.contiguous()
|
347 |
+
if bias.shape[2:] == (1, seqlen_k):
|
348 |
+
bias_type = 'vector'
|
349 |
+
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
350 |
+
bias_type = 'matrix'
|
351 |
+
else:
|
352 |
+
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
|
353 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
354 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
355 |
+
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
356 |
+
lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
357 |
+
tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
358 |
+
o = torch.empty_like(q)
|
359 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
360 |
+
BLOCK = 128
|
361 |
+
num_warps = 4 if d <= 64 else 8
|
362 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
|
363 |
+
_fwd_kernel[grid](q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1)
|
364 |
+
return (o, lse, softmax_scale)
|
365 |
+
|
366 |
+
def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
|
367 |
+
if do.stride(-1) != 1:
|
368 |
+
do = do.contiguous()
|
369 |
+
batch, seqlen_q, nheads, d = q.shape
|
370 |
+
_, seqlen_k, _, _ = k.shape
|
371 |
+
assert d <= 128
|
372 |
+
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
373 |
+
assert lse.shape == (batch, nheads, seqlen_q_rounded)
|
374 |
+
assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
|
375 |
+
assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
|
376 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
377 |
+
dq_accum = torch.empty_like(q, dtype=torch.float32)
|
378 |
+
delta = torch.empty_like(lse)
|
379 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
380 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
|
381 |
+
_bwd_preprocess_do_o_dot[grid](o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM)
|
382 |
+
has_bias = bias is not None
|
383 |
+
bias_type = 'none'
|
384 |
+
if has_bias:
|
385 |
+
assert bias.dtype in [q.dtype, torch.float]
|
386 |
+
assert bias.is_cuda
|
387 |
+
assert bias.dim() == 4
|
388 |
+
assert bias.stride(-1) == 1
|
389 |
+
if bias.shape[2:] == (1, seqlen_k):
|
390 |
+
bias_type = 'vector'
|
391 |
+
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
392 |
+
bias_type = 'matrix'
|
393 |
+
else:
|
394 |
+
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
|
395 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
396 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
397 |
+
grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1, batch * nheads)
|
398 |
+
_bwd_kernel[grid](q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM)
|
399 |
+
dq.copy_(dq_accum)
|
400 |
+
|
401 |
+
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
402 |
+
|
403 |
+
@staticmethod
|
404 |
+
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
405 |
+
"""
|
406 |
+
qkv: (batch, seqlen, 3, nheads, headdim)
|
407 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
|
408 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
|
409 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
|
410 |
+
"""
|
411 |
+
if qkv.stride(-1) != 1:
|
412 |
+
qkv = qkv.contiguous()
|
413 |
+
o, lse, ctx.softmax_scale = _flash_attn_forward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale)
|
414 |
+
ctx.save_for_backward(qkv, o, lse, bias)
|
415 |
+
ctx.causal = causal
|
416 |
+
return o
|
417 |
+
|
418 |
+
@staticmethod
|
419 |
+
def backward(ctx, do):
|
420 |
+
qkv, o, lse, bias = ctx.saved_tensors
|
421 |
+
assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
|
422 |
+
with torch.inference_mode():
|
423 |
+
dqkv = torch.empty_like(qkv)
|
424 |
+
_flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
425 |
+
return (dqkv, None, None, None)
|
426 |
+
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
|
427 |
+
|
428 |
+
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
429 |
+
|
430 |
+
@staticmethod
|
431 |
+
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
|
432 |
+
"""
|
433 |
+
q: (batch, seqlen_q, nheads, headdim)
|
434 |
+
kv: (batch, seqlen_k, 2, nheads, headdim)
|
435 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
436 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
437 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
438 |
+
"""
|
439 |
+
q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
|
440 |
+
o, lse, ctx.softmax_scale = _flash_attn_forward(q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale)
|
441 |
+
ctx.save_for_backward(q, kv, o, lse, bias)
|
442 |
+
ctx.causal = causal
|
443 |
+
return o
|
444 |
+
|
445 |
+
@staticmethod
|
446 |
+
def backward(ctx, do):
|
447 |
+
q, kv, o, lse, bias = ctx.saved_tensors
|
448 |
+
if len(ctx.needs_input_grad) >= 3:
|
449 |
+
assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
|
450 |
+
with torch.inference_mode():
|
451 |
+
dq = torch.empty_like(q)
|
452 |
+
dkv = torch.empty_like(kv)
|
453 |
+
_flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
454 |
+
return (dq, dkv, None, None, None)
|
455 |
+
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
|
456 |
+
|
457 |
+
class FlashAttnFunc(torch.autograd.Function):
|
458 |
+
|
459 |
+
@staticmethod
|
460 |
+
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
461 |
+
"""
|
462 |
+
q: (batch_size, seqlen_q, nheads, headdim)
|
463 |
+
k, v: (batch_size, seqlen_k, nheads, headdim)
|
464 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
465 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
466 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
467 |
+
"""
|
468 |
+
q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
|
469 |
+
o, lse, ctx.softmax_scale = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
|
470 |
+
ctx.save_for_backward(q, k, v, o, lse, bias)
|
471 |
+
ctx.causal = causal
|
472 |
+
return o
|
473 |
+
|
474 |
+
@staticmethod
|
475 |
+
def backward(ctx, do):
|
476 |
+
q, k, v, o, lse, bias = ctx.saved_tensors
|
477 |
+
assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
|
478 |
+
with torch.inference_mode():
|
479 |
+
dq = torch.empty_like(q)
|
480 |
+
dk = torch.empty_like(k)
|
481 |
+
dv = torch.empty_like(v)
|
482 |
+
_flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
483 |
+
return (dq, dk, dv, None, None, None)
|
484 |
+
flash_attn_func = FlashAttnFunc.apply
|
generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.37.0",
|
4 |
+
"use_cache": false
|
5 |
+
}
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea0f4892cf6a2da609fc78fab6176e0588072596b483deaa8ea7f9bd98b0ec7d
|
3 |
+
size 4867418872
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:094da751a895042020c3533ae688a3f7f4c63d939a67c4b82f89719692e44701
|
3 |
+
size 4997208808
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:286837a01694d84b56617f317434bd9d062670df73d9eb287f43a236aba7b843
|
3 |
+
size 4993407560
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc9e74be0a34c858abda23911f8b01b278242c7b46308419a7751ee3ccffc2fc
|
3 |
+
size 743548904
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15601489024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"transformer.blocks.0.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
|
7 |
+
"transformer.blocks.0.attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"transformer.blocks.0.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"transformer.blocks.0.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"transformer.blocks.0.norm_1.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"transformer.blocks.0.norm_2.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"transformer.blocks.1.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"transformer.blocks.1.attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"transformer.blocks.1.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"transformer.blocks.1.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"transformer.blocks.1.norm_1.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"transformer.blocks.1.norm_2.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"transformer.blocks.10.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
19 |
+
"transformer.blocks.10.attn.out_proj.weight": "model-00002-of-00004.safetensors",
|
20 |
+
"transformer.blocks.10.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
|
21 |
+
"transformer.blocks.10.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
|
22 |
+
"transformer.blocks.10.norm_1.weight": "model-00002-of-00004.safetensors",
|
23 |
+
"transformer.blocks.10.norm_2.weight": "model-00002-of-00004.safetensors",
|
24 |
+
"transformer.blocks.11.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
25 |
+
"transformer.blocks.11.attn.out_proj.weight": "model-00002-of-00004.safetensors",
|
26 |
+
"transformer.blocks.11.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
|
27 |
+
"transformer.blocks.11.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"transformer.blocks.11.norm_1.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"transformer.blocks.11.norm_2.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"transformer.blocks.12.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"transformer.blocks.12.attn.out_proj.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"transformer.blocks.12.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"transformer.blocks.12.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"transformer.blocks.12.norm_1.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"transformer.blocks.12.norm_2.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"transformer.blocks.13.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"transformer.blocks.13.attn.out_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"transformer.blocks.13.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"transformer.blocks.13.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"transformer.blocks.13.norm_1.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"transformer.blocks.13.norm_2.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"transformer.blocks.14.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"transformer.blocks.14.attn.out_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"transformer.blocks.14.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"transformer.blocks.14.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"transformer.blocks.14.norm_1.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"transformer.blocks.14.norm_2.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"transformer.blocks.15.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"transformer.blocks.15.attn.out_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"transformer.blocks.15.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"transformer.blocks.15.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"transformer.blocks.15.norm_1.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"transformer.blocks.15.norm_2.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"transformer.blocks.16.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"transformer.blocks.16.attn.out_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"transformer.blocks.16.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"transformer.blocks.16.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"transformer.blocks.16.norm_1.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"transformer.blocks.16.norm_2.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"transformer.blocks.17.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"transformer.blocks.17.attn.out_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"transformer.blocks.17.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"transformer.blocks.17.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"transformer.blocks.17.norm_1.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"transformer.blocks.17.norm_2.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"transformer.blocks.18.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"transformer.blocks.18.attn.out_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"transformer.blocks.18.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"transformer.blocks.18.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"transformer.blocks.18.norm_1.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"transformer.blocks.18.norm_2.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"transformer.blocks.19.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"transformer.blocks.19.attn.out_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"transformer.blocks.19.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"transformer.blocks.19.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"transformer.blocks.19.norm_1.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"transformer.blocks.19.norm_2.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"transformer.blocks.2.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
|
79 |
+
"transformer.blocks.2.attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
80 |
+
"transformer.blocks.2.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
|
81 |
+
"transformer.blocks.2.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
|
82 |
+
"transformer.blocks.2.norm_1.weight": "model-00001-of-00004.safetensors",
|
83 |
+
"transformer.blocks.2.norm_2.weight": "model-00001-of-00004.safetensors",
|
84 |
+
"transformer.blocks.20.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"transformer.blocks.20.attn.out_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"transformer.blocks.20.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"transformer.blocks.20.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"transformer.blocks.20.norm_1.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"transformer.blocks.20.norm_2.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"transformer.blocks.21.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
91 |
+
"transformer.blocks.21.attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
92 |
+
"transformer.blocks.21.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
|
93 |
+
"transformer.blocks.21.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
|
94 |
+
"transformer.blocks.21.norm_1.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"transformer.blocks.21.norm_2.weight": "model-00003-of-00004.safetensors",
|
96 |
+
"transformer.blocks.22.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
97 |
+
"transformer.blocks.22.attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
98 |
+
"transformer.blocks.22.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
|
99 |
+
"transformer.blocks.22.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
|
100 |
+
"transformer.blocks.22.norm_1.weight": "model-00003-of-00004.safetensors",
|
101 |
+
"transformer.blocks.22.norm_2.weight": "model-00003-of-00004.safetensors",
|
102 |
+
"transformer.blocks.23.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
103 |
+
"transformer.blocks.23.attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
104 |
+
"transformer.blocks.23.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
|
105 |
+
"transformer.blocks.23.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
|
106 |
+
"transformer.blocks.23.norm_1.weight": "model-00003-of-00004.safetensors",
|
107 |
+
"transformer.blocks.23.norm_2.weight": "model-00003-of-00004.safetensors",
|
108 |
+
"transformer.blocks.24.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
109 |
+
"transformer.blocks.24.attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
110 |
+
"transformer.blocks.24.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
|
111 |
+
"transformer.blocks.24.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
|
112 |
+
"transformer.blocks.24.norm_1.weight": "model-00003-of-00004.safetensors",
|
113 |
+
"transformer.blocks.24.norm_2.weight": "model-00003-of-00004.safetensors",
|
114 |
+
"transformer.blocks.25.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
115 |
+
"transformer.blocks.25.attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
116 |
+
"transformer.blocks.25.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
|
117 |
+
"transformer.blocks.25.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
|
118 |
+
"transformer.blocks.25.norm_1.weight": "model-00003-of-00004.safetensors",
|
119 |
+
"transformer.blocks.25.norm_2.weight": "model-00003-of-00004.safetensors",
|
120 |
+
"transformer.blocks.26.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
121 |
+
"transformer.blocks.26.attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
122 |
+
"transformer.blocks.26.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
|
123 |
+
"transformer.blocks.26.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
|
124 |
+
"transformer.blocks.26.norm_1.weight": "model-00003-of-00004.safetensors",
|
125 |
+
"transformer.blocks.26.norm_2.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"transformer.blocks.27.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
127 |
+
"transformer.blocks.27.attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"transformer.blocks.27.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"transformer.blocks.27.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"transformer.blocks.27.norm_1.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"transformer.blocks.27.norm_2.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"transformer.blocks.28.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"transformer.blocks.28.attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
134 |
+
"transformer.blocks.28.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"transformer.blocks.28.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"transformer.blocks.28.norm_1.weight": "model-00003-of-00004.safetensors",
|
137 |
+
"transformer.blocks.28.norm_2.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"transformer.blocks.29.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"transformer.blocks.29.attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"transformer.blocks.29.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"transformer.blocks.29.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"transformer.blocks.29.norm_1.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"transformer.blocks.29.norm_2.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"transformer.blocks.3.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
|
145 |
+
"transformer.blocks.3.attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
146 |
+
"transformer.blocks.3.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
|
147 |
+
"transformer.blocks.3.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
|
148 |
+
"transformer.blocks.3.norm_1.weight": "model-00001-of-00004.safetensors",
|
149 |
+
"transformer.blocks.3.norm_2.weight": "model-00001-of-00004.safetensors",
|
150 |
+
"transformer.blocks.30.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"transformer.blocks.30.attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"transformer.blocks.30.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"transformer.blocks.30.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"transformer.blocks.30.norm_1.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"transformer.blocks.30.norm_2.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"transformer.blocks.31.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"transformer.blocks.31.attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"transformer.blocks.31.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"transformer.blocks.31.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"transformer.blocks.31.norm_1.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"transformer.blocks.31.norm_2.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"transformer.blocks.4.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
|
163 |
+
"transformer.blocks.4.attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"transformer.blocks.4.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
|
165 |
+
"transformer.blocks.4.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
|
166 |
+
"transformer.blocks.4.norm_1.weight": "model-00001-of-00004.safetensors",
|
167 |
+
"transformer.blocks.4.norm_2.weight": "model-00001-of-00004.safetensors",
|
168 |
+
"transformer.blocks.5.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
|
169 |
+
"transformer.blocks.5.attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
170 |
+
"transformer.blocks.5.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
|
171 |
+
"transformer.blocks.5.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
|
172 |
+
"transformer.blocks.5.norm_1.weight": "model-00001-of-00004.safetensors",
|
173 |
+
"transformer.blocks.5.norm_2.weight": "model-00001-of-00004.safetensors",
|
174 |
+
"transformer.blocks.6.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
|
175 |
+
"transformer.blocks.6.attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
176 |
+
"transformer.blocks.6.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
|
177 |
+
"transformer.blocks.6.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
|
178 |
+
"transformer.blocks.6.norm_1.weight": "model-00001-of-00004.safetensors",
|
179 |
+
"transformer.blocks.6.norm_2.weight": "model-00001-of-00004.safetensors",
|
180 |
+
"transformer.blocks.7.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
|
181 |
+
"transformer.blocks.7.attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
182 |
+
"transformer.blocks.7.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
|
183 |
+
"transformer.blocks.7.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
|
184 |
+
"transformer.blocks.7.norm_1.weight": "model-00001-of-00004.safetensors",
|
185 |
+
"transformer.blocks.7.norm_2.weight": "model-00001-of-00004.safetensors",
|
186 |
+
"transformer.blocks.8.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
|
187 |
+
"transformer.blocks.8.attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
188 |
+
"transformer.blocks.8.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
|
189 |
+
"transformer.blocks.8.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
|
190 |
+
"transformer.blocks.8.norm_1.weight": "model-00001-of-00004.safetensors",
|
191 |
+
"transformer.blocks.8.norm_2.weight": "model-00001-of-00004.safetensors",
|
192 |
+
"transformer.blocks.9.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
|
193 |
+
"transformer.blocks.9.attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
194 |
+
"transformer.blocks.9.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
|
195 |
+
"transformer.blocks.9.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
|
196 |
+
"transformer.blocks.9.norm_1.weight": "model-00001-of-00004.safetensors",
|
197 |
+
"transformer.blocks.9.norm_2.weight": "model-00001-of-00004.safetensors",
|
198 |
+
"transformer.mm_projector.0.bias": "model-00004-of-00004.safetensors",
|
199 |
+
"transformer.mm_projector.0.weight": "model-00004-of-00004.safetensors",
|
200 |
+
"transformer.mm_projector.2.bias": "model-00004-of-00004.safetensors",
|
201 |
+
"transformer.mm_projector.2.weight": "model-00004-of-00004.safetensors",
|
202 |
+
"transformer.norm_f.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"transformer.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00003-of-00004.safetensors",
|
204 |
+
"transformer.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"transformer.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors",
|
207 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors",
|
213 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
215 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
|
217 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
219 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors",
|
225 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors",
|
227 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors",
|
229 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
231 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
237 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
239 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
240 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
241 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
242 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
243 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
244 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
245 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
246 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
247 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
248 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
249 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
250 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
251 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
252 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
253 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
254 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
255 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
256 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
257 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
258 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
259 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
260 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
261 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
262 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
263 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
264 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
265 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
266 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
267 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
268 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
269 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
270 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
271 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
272 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
273 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
274 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
275 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
276 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
277 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
278 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
279 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
280 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
281 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
282 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
283 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
284 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
285 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
286 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
287 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
288 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
289 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
290 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
291 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
292 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
293 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
294 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
295 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
296 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
297 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
298 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
299 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
300 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
301 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
302 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
303 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
304 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
305 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
306 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
307 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
308 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
309 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
310 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
311 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
312 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
313 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
314 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
315 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
316 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
317 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
318 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
319 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
320 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
321 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
322 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
323 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
324 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
325 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
326 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
327 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
328 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
329 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
330 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
331 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
332 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
333 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
334 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
335 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
336 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
337 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
338 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
339 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
340 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
341 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
342 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
343 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
344 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
345 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
346 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
347 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
348 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
349 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
350 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
351 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
352 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
353 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
354 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
355 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
356 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
357 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
358 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
359 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
360 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
361 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
362 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
363 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
364 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
365 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
366 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
367 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
368 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
369 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
370 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
371 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
372 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
373 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
374 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
375 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
376 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
377 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
378 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
379 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
380 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
381 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
382 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
383 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
384 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
385 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
386 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
387 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
388 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
389 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
390 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
391 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
392 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
393 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
394 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
395 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
396 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
397 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
398 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors",
|
399 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors",
|
400 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors",
|
401 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors",
|
402 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors",
|
403 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors",
|
404 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors",
|
405 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors",
|
406 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
407 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
408 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
|
409 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
410 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
411 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
412 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
413 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
414 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
415 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
416 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
417 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
418 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
419 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
420 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
421 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
422 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
423 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
424 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
425 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
426 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
427 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
428 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
429 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
430 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
431 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
432 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
433 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
434 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
435 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
436 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
437 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
438 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
439 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
440 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
441 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
442 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
443 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
444 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
445 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
446 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
447 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
448 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
449 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
450 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
451 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
452 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
453 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
454 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
455 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
456 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
457 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
458 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
459 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
460 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
461 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
462 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
463 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
464 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
465 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
466 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
467 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
468 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
469 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
470 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
471 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
472 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
473 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
474 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
475 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
476 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
477 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
478 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
479 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
480 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
481 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
482 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
483 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
484 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
485 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
486 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
487 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
488 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
489 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
490 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
491 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
492 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
493 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
494 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
495 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
496 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
497 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
498 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
499 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
500 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
501 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
502 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
503 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
504 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
505 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
506 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
507 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
508 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
509 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
510 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
511 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
512 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
513 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
514 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
515 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
516 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
517 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
518 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
519 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
520 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
521 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
522 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
523 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
524 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
525 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
526 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors",
|
527 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors",
|
528 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors",
|
529 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors",
|
530 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors",
|
531 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors",
|
532 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors",
|
533 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors",
|
534 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
535 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
536 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
|
537 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
538 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
539 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
540 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
541 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
542 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors",
|
543 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors",
|
544 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors",
|
545 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors",
|
546 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors",
|
547 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors",
|
548 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors",
|
549 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors",
|
550 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
551 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
552 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
|
553 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
554 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
555 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
556 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
557 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
558 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors",
|
559 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors",
|
560 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
561 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
562 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
563 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
564 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
565 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
566 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
567 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
568 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
|
569 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
|
570 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
571 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
572 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
573 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
574 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
575 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
576 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
577 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
578 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
579 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
580 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
581 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
582 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
583 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
584 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
585 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
586 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
587 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
588 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
589 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
590 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
591 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
592 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
593 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
594 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
595 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
596 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
597 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
598 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
599 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
600 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
601 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
602 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
603 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
604 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
605 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
606 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
607 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
608 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
609 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
610 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
611 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
612 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
613 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
614 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
615 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
616 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
617 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
618 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
619 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
620 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
621 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
622 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
623 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
624 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
625 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
626 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
627 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
628 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
629 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
630 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
631 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
632 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
633 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
634 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
635 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
636 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
637 |
+
"transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
638 |
+
"transformer.vision_tower.vision_tower.vision_model.head.attention.in_proj_bias": "model-00004-of-00004.safetensors",
|
639 |
+
"transformer.vision_tower.vision_tower.vision_model.head.attention.in_proj_weight": "model-00004-of-00004.safetensors",
|
640 |
+
"transformer.vision_tower.vision_tower.vision_model.head.attention.out_proj.bias": "model-00004-of-00004.safetensors",
|
641 |
+
"transformer.vision_tower.vision_tower.vision_model.head.attention.out_proj.weight": "model-00004-of-00004.safetensors",
|
642 |
+
"transformer.vision_tower.vision_tower.vision_model.head.layernorm.bias": "model-00004-of-00004.safetensors",
|
643 |
+
"transformer.vision_tower.vision_tower.vision_model.head.layernorm.weight": "model-00004-of-00004.safetensors",
|
644 |
+
"transformer.vision_tower.vision_tower.vision_model.head.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
645 |
+
"transformer.vision_tower.vision_tower.vision_model.head.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
646 |
+
"transformer.vision_tower.vision_tower.vision_model.head.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
647 |
+
"transformer.vision_tower.vision_tower.vision_model.head.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
648 |
+
"transformer.vision_tower.vision_tower.vision_model.head.probe": "model-00004-of-00004.safetensors",
|
649 |
+
"transformer.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00004-of-00004.safetensors",
|
650 |
+
"transformer.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00004-of-00004.safetensors",
|
651 |
+
"transformer.wte.weight": "model-00001-of-00004.safetensors"
|
652 |
+
}
|
653 |
+
}
|
norm.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Optional, Type, Union
|
2 |
+
import torch
|
3 |
+
|
4 |
+
def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor:
|
5 |
+
if torch.is_autocast_enabled():
|
6 |
+
if tensor.device.type == 'cuda':
|
7 |
+
dtype = torch.get_autocast_gpu_dtype()
|
8 |
+
elif tensor.device.type == 'cpu':
|
9 |
+
dtype = torch.get_autocast_cpu_dtype()
|
10 |
+
else:
|
11 |
+
raise NotImplementedError()
|
12 |
+
return tensor.to(dtype=dtype)
|
13 |
+
return tensor
|
14 |
+
|
15 |
+
class LPLayerNorm(torch.nn.LayerNorm):
|
16 |
+
|
17 |
+
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, elementwise_affine: bool=True, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None):
|
18 |
+
super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
|
19 |
+
|
20 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
21 |
+
module_device = x.device
|
22 |
+
downcast_x = _cast_if_autocast_enabled(x)
|
23 |
+
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
24 |
+
downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
|
25 |
+
with torch.autocast(enabled=False, device_type=module_device.type):
|
26 |
+
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
27 |
+
|
28 |
+
def rms_norm(x: torch.Tensor, weight: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor:
|
29 |
+
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
30 |
+
if weight is not None:
|
31 |
+
return output * weight
|
32 |
+
return output
|
33 |
+
|
34 |
+
class RMSNorm(torch.nn.Module):
|
35 |
+
|
36 |
+
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
|
37 |
+
super().__init__()
|
38 |
+
self.eps = eps
|
39 |
+
if weight:
|
40 |
+
self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device))
|
41 |
+
else:
|
42 |
+
self.register_parameter('weight', None)
|
43 |
+
|
44 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
45 |
+
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
|
46 |
+
|
47 |
+
class LPRMSNorm(RMSNorm):
|
48 |
+
|
49 |
+
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
|
50 |
+
super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
|
51 |
+
|
52 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
+
downcast_x = _cast_if_autocast_enabled(x)
|
54 |
+
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
55 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
56 |
+
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
|
57 |
+
NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|SYSTEM|>",
|
4 |
+
"<|USER|>",
|
5 |
+
"<|RESPONSE|>"
|
6 |
+
],
|
7 |
+
"bos_token": {
|
8 |
+
"content": "<s>",
|
9 |
+
"lstrip": false,
|
10 |
+
"normalized": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"eos_token": {
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"mask_token": {
|
22 |
+
"content": "<mask>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"pad_token": "<unk>",
|
29 |
+
"unk_token": {
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false
|
35 |
+
}
|
36 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,1758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<pad>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"70000": {
|
44 |
+
"content": "<unused0>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"70001": {
|
52 |
+
"content": "<unused1>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"70002": {
|
60 |
+
"content": "<unused2>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"70003": {
|
68 |
+
"content": "<unused3>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"70004": {
|
76 |
+
"content": "<unused4>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"70005": {
|
84 |
+
"content": "<unused5>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"70006": {
|
92 |
+
"content": "<unused6>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"70007": {
|
100 |
+
"content": "<unused7>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"70008": {
|
108 |
+
"content": "<unused8>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"70009": {
|
116 |
+
"content": "<unused9>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"70010": {
|
124 |
+
"content": "<unused10>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"70011": {
|
132 |
+
"content": "<unused11>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"70012": {
|
140 |
+
"content": "<unused12>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"70013": {
|
148 |
+
"content": "<unused13>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"70014": {
|
156 |
+
"content": "<unused14>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"70015": {
|
164 |
+
"content": "<unused15>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"70016": {
|
172 |
+
"content": "<unused16>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"70017": {
|
180 |
+
"content": "<unused17>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"70018": {
|
188 |
+
"content": "<unused18>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"70019": {
|
196 |
+
"content": "<unused19>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"70020": {
|
204 |
+
"content": "<unused20>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"70021": {
|
212 |
+
"content": "<unused21>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"70022": {
|
220 |
+
"content": "<unused22>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"70023": {
|
228 |
+
"content": "<unused23>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"70024": {
|
236 |
+
"content": "<unused24>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"70025": {
|
244 |
+
"content": "<unused25>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"70026": {
|
252 |
+
"content": "<unused26>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"70027": {
|
260 |
+
"content": "<unused27>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"70028": {
|
268 |
+
"content": "<unused28>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"70029": {
|
276 |
+
"content": "<unused29>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"70030": {
|
284 |
+
"content": "<unused30>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"70031": {
|
292 |
+
"content": "<unused31>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"70032": {
|
300 |
+
"content": "<unused32>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"70033": {
|
308 |
+
"content": "<unused33>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"70034": {
|
316 |
+
"content": "<unused34>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"70035": {
|
324 |
+
"content": "<unused35>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"70036": {
|
332 |
+
"content": "<unused36>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"70037": {
|
340 |
+
"content": "<unused37>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"70038": {
|
348 |
+
"content": "<unused38>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"70039": {
|
356 |
+
"content": "<unused39>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"70040": {
|
364 |
+
"content": "<unused40>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"70041": {
|
372 |
+
"content": "<unused41>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"70042": {
|
380 |
+
"content": "<unused42>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"70043": {
|
388 |
+
"content": "<unused43>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"70044": {
|
396 |
+
"content": "<unused44>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"70045": {
|
404 |
+
"content": "<unused45>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"70046": {
|
412 |
+
"content": "<unused46>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"70047": {
|
420 |
+
"content": "<unused47>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"70048": {
|
428 |
+
"content": "<unused48>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"70049": {
|
436 |
+
"content": "<unused49>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"70050": {
|
444 |
+
"content": "<unused50>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"70051": {
|
452 |
+
"content": "<unused51>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"70052": {
|
460 |
+
"content": "<unused52>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"70053": {
|
468 |
+
"content": "<unused53>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"70054": {
|
476 |
+
"content": "<unused54>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"70055": {
|
484 |
+
"content": "<unused55>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"70056": {
|
492 |
+
"content": "<unused56>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"70057": {
|
500 |
+
"content": "<unused57>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"70058": {
|
508 |
+
"content": "<unused58>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"70059": {
|
516 |
+
"content": "<unused59>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"70060": {
|
524 |
+
"content": "<unused60>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"70061": {
|
532 |
+
"content": "<unused61>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"70062": {
|
540 |
+
"content": "<unused62>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"70063": {
|
548 |
+
"content": "<unused63>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"70064": {
|
556 |
+
"content": "<unused64>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"70065": {
|
564 |
+
"content": "<unused65>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"70066": {
|
572 |
+
"content": "<unused66>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"70067": {
|
580 |
+
"content": "<unused67>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"70068": {
|
588 |
+
"content": "<unused68>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"70069": {
|
596 |
+
"content": "<unused69>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"70070": {
|
604 |
+
"content": "<unused70>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"70071": {
|
612 |
+
"content": "<unused71>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"70072": {
|
620 |
+
"content": "<unused72>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"70073": {
|
628 |
+
"content": "<unused73>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"70074": {
|
636 |
+
"content": "<unused74>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"70075": {
|
644 |
+
"content": "<unused75>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"70076": {
|
652 |
+
"content": "<unused76>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"70077": {
|
660 |
+
"content": "<unused77>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"70078": {
|
668 |
+
"content": "<unused78>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"70079": {
|
676 |
+
"content": "<unused79>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"70080": {
|
684 |
+
"content": "<unused80>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"70081": {
|
692 |
+
"content": "<unused81>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"70082": {
|
700 |
+
"content": "<unused82>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"70083": {
|
708 |
+
"content": "<unused83>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"70084": {
|
716 |
+
"content": "<unused84>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"70085": {
|
724 |
+
"content": "<unused85>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"70086": {
|
732 |
+
"content": "<unused86>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"70087": {
|
740 |
+
"content": "<unused87>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"70088": {
|
748 |
+
"content": "<unused88>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"70089": {
|
756 |
+
"content": "<unused89>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"70090": {
|
764 |
+
"content": "<unused90>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"70091": {
|
772 |
+
"content": "<unused91>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"70092": {
|
780 |
+
"content": "<unused92>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"70093": {
|
788 |
+
"content": "<unused93>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"70094": {
|
796 |
+
"content": "<unused94>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"70095": {
|
804 |
+
"content": "<unused95>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"70096": {
|
812 |
+
"content": "<unused96>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"70097": {
|
820 |
+
"content": "<unused97>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"70098": {
|
828 |
+
"content": "<unused98>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"70099": {
|
836 |
+
"content": "<unused99>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"70100": {
|
844 |
+
"content": "<unused100>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"70101": {
|
852 |
+
"content": "<unused101>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"70102": {
|
860 |
+
"content": "<unused102>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"70103": {
|
868 |
+
"content": "<unused103>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"70104": {
|
876 |
+
"content": "<unused104>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"70105": {
|
884 |
+
"content": "<unused105>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"70106": {
|
892 |
+
"content": "<unused106>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"70107": {
|
900 |
+
"content": "<unused107>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"70108": {
|
908 |
+
"content": "<unused108>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"70109": {
|
916 |
+
"content": "<unused109>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"70110": {
|
924 |
+
"content": "<unused110>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"70111": {
|
932 |
+
"content": "<unused111>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"70112": {
|
940 |
+
"content": "<unused112>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"70113": {
|
948 |
+
"content": "<unused113>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"70114": {
|
956 |
+
"content": "<unused114>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"70115": {
|
964 |
+
"content": "<unused115>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"70116": {
|
972 |
+
"content": "<unused116>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"70117": {
|
980 |
+
"content": "<unused117>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"70118": {
|
988 |
+
"content": "<unused118>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"70119": {
|
996 |
+
"content": "<unused119>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"70120": {
|
1004 |
+
"content": "<unused120>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"70121": {
|
1012 |
+
"content": "<unused121>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"70122": {
|
1020 |
+
"content": "<unused122>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"70123": {
|
1028 |
+
"content": "<unused123>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"70124": {
|
1036 |
+
"content": "<unused124>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"70125": {
|
1044 |
+
"content": "<unused125>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"70126": {
|
1052 |
+
"content": "<unused126>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"70127": {
|
1060 |
+
"content": "<unused127>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"70128": {
|
1068 |
+
"content": "<unused128>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"70129": {
|
1076 |
+
"content": "<unused129>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"70130": {
|
1084 |
+
"content": "<unused130>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"70131": {
|
1092 |
+
"content": "<unused131>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"70132": {
|
1100 |
+
"content": "<unused132>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"70133": {
|
1108 |
+
"content": "<unused133>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"70134": {
|
1116 |
+
"content": "<unused134>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"70135": {
|
1124 |
+
"content": "<unused135>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"70136": {
|
1132 |
+
"content": "<unused136>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"70137": {
|
1140 |
+
"content": "<unused137>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"70138": {
|
1148 |
+
"content": "<unused138>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"70139": {
|
1156 |
+
"content": "<unused139>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"70140": {
|
1164 |
+
"content": "<unused140>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"70141": {
|
1172 |
+
"content": "<unused141>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"70142": {
|
1180 |
+
"content": "<unused142>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"70143": {
|
1188 |
+
"content": "<unused143>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"70144": {
|
1196 |
+
"content": "<unused144>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"70145": {
|
1204 |
+
"content": "<unused145>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"70146": {
|
1212 |
+
"content": "<unused146>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"70147": {
|
1220 |
+
"content": "<unused147>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"70148": {
|
1228 |
+
"content": "<unused148>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"70149": {
|
1236 |
+
"content": "<unused149>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"70150": {
|
1244 |
+
"content": "<unused150>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"70151": {
|
1252 |
+
"content": "<unused151>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"70152": {
|
1260 |
+
"content": "<unused152>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"70153": {
|
1268 |
+
"content": "<unused153>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"70154": {
|
1276 |
+
"content": "<unused154>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"70155": {
|
1284 |
+
"content": "<unused155>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"70156": {
|
1292 |
+
"content": "<unused156>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"70157": {
|
1300 |
+
"content": "<unused157>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"70158": {
|
1308 |
+
"content": "<unused158>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"70159": {
|
1316 |
+
"content": "<unused159>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"70160": {
|
1324 |
+
"content": "<unused160>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"70161": {
|
1332 |
+
"content": "<unused161>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"70162": {
|
1340 |
+
"content": "<unused162>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"70163": {
|
1348 |
+
"content": "<unused163>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"70164": {
|
1356 |
+
"content": "<unused164>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"70165": {
|
1364 |
+
"content": "<unused165>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"70166": {
|
1372 |
+
"content": "<unused166>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"70167": {
|
1380 |
+
"content": "<unused167>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"70168": {
|
1388 |
+
"content": "<unused168>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"70169": {
|
1396 |
+
"content": "<unused169>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"70170": {
|
1404 |
+
"content": "<unused170>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"70171": {
|
1412 |
+
"content": "<unused171>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"70172": {
|
1420 |
+
"content": "<unused172>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"70173": {
|
1428 |
+
"content": "<unused173>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"70174": {
|
1436 |
+
"content": "<unused174>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"70175": {
|
1444 |
+
"content": "<unused175>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"70176": {
|
1452 |
+
"content": "<unused176>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"70177": {
|
1460 |
+
"content": "<unused177>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"70178": {
|
1468 |
+
"content": "<unused178>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"70179": {
|
1476 |
+
"content": "<unused179>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"70180": {
|
1484 |
+
"content": "<unused180>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"70181": {
|
1492 |
+
"content": "<unused181>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"70182": {
|
1500 |
+
"content": "<unused182>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"70183": {
|
1508 |
+
"content": "<unused183>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"70184": {
|
1516 |
+
"content": "<unused184>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"70185": {
|
1524 |
+
"content": "<unused185>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"70186": {
|
1532 |
+
"content": "<unused186>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"70187": {
|
1540 |
+
"content": "<unused187>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"70188": {
|
1548 |
+
"content": "<unused188>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"70189": {
|
1556 |
+
"content": "<unused189>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"70190": {
|
1564 |
+
"content": "<unused190>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"70191": {
|
1572 |
+
"content": "<unused191>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"70192": {
|
1580 |
+
"content": "<unused192>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"70193": {
|
1588 |
+
"content": "<unused193>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"70194": {
|
1596 |
+
"content": "<unused194>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"70195": {
|
1604 |
+
"content": "<unused195>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"70196": {
|
1612 |
+
"content": "<unused196>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"70197": {
|
1620 |
+
"content": "<unused197>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"70198": {
|
1628 |
+
"content": "<unused198>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"70199": {
|
1636 |
+
"content": "<unused199>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"70200": {
|
1644 |
+
"content": "<unused200>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"70201": {
|
1652 |
+
"content": "<unused201>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"70202": {
|
1660 |
+
"content": "<unused202>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"70203": {
|
1668 |
+
"content": "<unused203>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"70204": {
|
1676 |
+
"content": "<unused204>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"70205": {
|
1684 |
+
"content": "<unused205>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"70206": {
|
1692 |
+
"content": "<unused206>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"70207": {
|
1700 |
+
"content": "<unused207>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"70208": {
|
1708 |
+
"content": "<unused208>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"70209": {
|
1716 |
+
"content": "<|SYSTEM|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"70210": {
|
1724 |
+
"content": "<|USER|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"70211": {
|
1732 |
+
"content": "<|RESPONSE|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
}
|
1739 |
+
},
|
1740 |
+
"additional_special_tokens": [
|
1741 |
+
"<|SYSTEM|>",
|
1742 |
+
"<|USER|>",
|
1743 |
+
"<|RESPONSE|>"
|
1744 |
+
],
|
1745 |
+
"bos_token": "<s>",
|
1746 |
+
"clean_up_tokenization_spaces": true,
|
1747 |
+
"eos_token": "</s>",
|
1748 |
+
"mask_token": "<mask>",
|
1749 |
+
"model_input_names": [
|
1750 |
+
"input_ids",
|
1751 |
+
"attention_mask"
|
1752 |
+
],
|
1753 |
+
"model_max_length": 4096,
|
1754 |
+
"pad_token": "<unk>",
|
1755 |
+
"padding_side": "right",
|
1756 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
1757 |
+
"unk_token": "<unk>"
|
1758 |
+
}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10d9c29c7c9fa9e524674f6c2d91ad5229f2a072802808e65fcdedc6648a1eac
|
3 |
+
size 6392
|
warnings.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class VersionedDeprecationWarning(DeprecationWarning):
|
2 |
+
"""A custom deprecation warning class that includes version information.
|
3 |
+
|
4 |
+
Attributes:
|
5 |
+
message (str): The deprecation message describing why the feature is deprecated.
|
6 |
+
remove_version (str): The version in which the feature will be removed.
|
7 |
+
|
8 |
+
Example:
|
9 |
+
>>> def deprecated_function():
|
10 |
+
... warnings.warn(
|
11 |
+
... VersionedDeprecationWarning(
|
12 |
+
... "Function XYZ is deprecated.",
|
13 |
+
... remove_version="2.0.0"
|
14 |
+
... )
|
15 |
+
... )
|
16 |
+
...
|
17 |
+
>>> deprecated_function()
|
18 |
+
DeprecationWarning: Function XYZ is deprecated. It will be removed in version 2.0.0.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, message: str, remove_version: str) -> None:
|
22 |
+
super().__init__(message + f' It will be removed in version {remove_version}.')
|