kraken2404 commited on
Commit
eb68886
·
1 Parent(s): a1d147f

Upload a test PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 76.97 +/- 108.56
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5a57d96cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5a57d96d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5a57d96dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5a57d96e60>", "_build": "<function ActorCriticPolicy._build at 0x7f5a57d96ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5a57d96f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5a57d97010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5a57d970a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5a57d97130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5a57d971c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5a57d97250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5a57d972e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5a57d8f240>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 480568, "_total_timesteps": 1300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685177035384027902, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACoK5j4Bv509xcZzPjO6ob6dDVY8nboGPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.6305723076923078, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF78P1+RYA+MAWyUTegDjAF0lEdAhjIj0163RXV9lChoBkdAXcyH58BuGmgHTegDaAhHQIY+tayKNyZ1fZQoaAZHQFPZOY6XBxhoB03oA2gIR0CGTtR8+iaidX2UKGgGR0AcO5z5oGpuaAdNAgFoCEdAhlMFb/wRXnV9lChoBkdAV7JQ53kgfWgHTegDaAhHQIZmUUqQRwt1fZQoaAZHQFdnGhVU+9toB03oA2gIR0CGcu3VCojwdX2UKGgGR0BWyFYEGJN1aAdN6ANoCEdAhn+QqAjIJnV9lChoBkdAZP7n003wTmgHTegDaAhHQIaMRXwLE1l1fZQoaAZHQGUVyBK+SKZoB03oA2gIR0CGmNoB7u2JdX2UKGgGR0BY66x1PnB+aAdN6ANoCEdAhqVz1TR6W3V9lChoBkdAYT9PGhmGumgHTegDaAhHQIayLyWiUPh1fZQoaAZHQFdbNlAeJYVoB03oA2gIR0CGwa5bQkX2dX2UKGgGR0BY1qoZQ53laAdN6ANoCEdAhtPMcABDHHV9lChoBkdAYcdrWy1NQGgHTegDaAhHQIbjANI9TxZ1fZQoaAZHQF3Qw5NoJzFoB03oA2gIR0CG76faHsTndX2UKGgGR0BjBtgtvn8saAdN6ANoCEdAhvxSfL9uP3V9lChoBkdAYjzHNorWiGgHTegDaAhHQIcIxftx+8Z1fZQoaAZHQGRdLSE12q1oB03oA2gIR0CHFYkiUxEfdX2UKGgGR0BgNFbVz6rOaAdN6ANoCEdAhyJ55Rjz7XV9lChoBkdAYuGH9m6GxmgHTegDaAhHQIcwkEFGG211fZQoaAZHQF0vbMX7+DRoB03oA2gIR0CHQY9IPK+0dX2UKGgGR0BqBtM7EHdHaAdNgwJoCEdAh0ylzdUKiXV9lChoBkdAYGSONo8IRmgHTegDaAhHQIdabOX3QD51fZQoaAZHQDed0r9VFQVoB0v6aAhHQIddQKneizt1fZQoaAZHQF/JNY8uBc1oB03oA2gIR0CHadGe+VTrdX2UKGgGR0BdUlXeWOZLaAdN6ANoCEdAh3Zxgy/KyXV9lChoBkdAYYoAMlTm4mgHTegDaAhHQIeC/X/YJ3R1fZQoaAZHQGSzzmwJPZZoB03oA2gIR0CHj5ikO7QLdX2UKGgGR0BgBOI0qH45aAdN6ANoCEdAh5wp17pmmXV9lChoBkdAZwnwJgLJCGgHTegDaAhHQIermDjBEa51fZQoaAZHQFzHeWv8qF1oB03oA2gIR0CHvhupCKJmdX2UKGgGR0Bc7i4jKPn0aAdN6ANoCEdAh82GnO0LMXV9lChoBkdARUog7o0Q9WgHS5hoCEdAh89iUX531XV9lChoBkdAPOQ7LdN34mgHS7toCEdAh9K0YTCcgHV9lChoBkdAOQnpnpSrHWgHS6toCEdAh9SxpDeCTXV9lChoBkdAYbONiH6/I2gHTegDaAhHQIfhLBoEjgR1fZQoaAZHQD/qBEroW59oB0vLaAhHQIfjaQDFId51fZQoaAZHQDbiI0qH449oB0vOaAhHQIfl2KoAGSp1fZQoaAZHQGP/bgTAWSFoB03oA2gIR0CH8lrv9cbBdX2UKGgGR0A2BS9ugpSaaAdLzmgIR0CH9LEzfrKOdX2UKGgGR0BXQgWi1y/9aAdN6ANoCEdAiAEyWZ7Xx3V9lChoBkdATAXtnf2saWgHS8NoCEdAiAOH5aePJnV9lChoBkdAZSOHQhOgx2gHTegDaAhHQIgQRX+2mYV1fZQoaAZHQGoT56Uqx1RoB03CAmgIR0CIGwQarFOxdX2UKGgGR0BgvdFc6eXiaAdN6ANoCEdAiCx0Pxx1gnV9lChoBkdAZD1xz7uUlmgHTegDaAhHQIg+Dc/MW451fZQoaAZHQF+mpHI6r/9oB03oA2gIR0CISoraufVadX2UKGgGR0BeNAbMottiaAdN6ANoCEdAiFbzNt65XnV9lChoBkdAXlGWAwwj+2gHTegDaAhHQIhjp39rGip1fZQoaAZHQGNk0Kqn3tdoB03oA2gIR0CIcFiLl3hXdX2UKGgGR0BhexMg2ZRbaAdN6ANoCEdAiH0TsY2sJnV9lChoBkdAVnNmDlHSW2gHTegDaAhHQIiKClUIcBF1fZQoaAZHQFmQkwevIOpoB03oA2gIR0CImpuBMBZIdX2UKGgGR0BhPxKcurZKaAdN6ANoCEdAiK2xv3rUsnV9lChoBkdAYHYV0tAcDWgHTegDaAhHQIi7koKD0191fZQoaAZHQGCWWU8mrsBoB03oA2gIR0CIyGAPNFBqdX2UKGgGR0A/uQkHD766aAdLsGgIR0CIylXaJyhjdX2UKGgGR0AjQiV0Lc9GaAdL6mgIR0CIzPvNu+AVdX2UKGgGR0AlMvStvGZNaAdLsGgIR0CIzuyZ8a4udX2UKGgGR0BbC+cQRPGiaAdN6ANoCEdAiNuyWiUPhHV9lChoBkdAWWargflp5GgHTegDaAhHQIjoS28Zk091fZQoaAZHQGNdxJEpiJBoB03oA2gIR0CI9RBgNPP+dX2UKGgGR0AaWsNlRP43aAdLyWgIR0CI+It/4IrwdX2UKGgGR0BKTitRvWH2aAdLrGgIR0CI+oSElE7XdX2UKGgGR0Bha59w3o9taAdN6ANoCEdAiQmXGn4wiHV9lChoBkdAXR/VEuxrz2gHTegDaAhHQIkbi44Ia991fZQoaAZHQGDZNPxhDw9oB03oA2gIR0CJK9uOS4e+dX2UKGgGR0BhrPWxyGSIaAdN6ANoCEdAiTh01AJLNHV9lChoBkdAZGvg9eQdS2gHTegDaAhHQIlFN7pmmLt1fZQoaAZHQGK0gPVd5Y5oB03oA2gIR0CJUcEcKgIydX2UKGgGR0Bi/WTTvy9VaAdN0gFoCEdAiVcm9Htnf3V9lChoBkdAQHd01ZTya2gHS5NoCEdAiVjDlxOtXHV9lChoBkfAA17E5yU9p2gHS6doCEdAiVqc580DU3V9lChoBkdAYYgvIOpbU2gHTegDaAhHQIlnGQhfShJ1fZQoaAZHQGRQfIjnmq5oB03oA2gIR0CJc60rK/21dX2UKGgGR0Akbva11GLDaAdLm2gIR0CJdXDmbLEDdX2UKGgGR0BeVDNMXaakaAdN6ANoCEdAiYY3Mpw0f3V9lChoBkdAKD3SKFZgX2gHS6VoCEdAiYrDsUqQR3V9lChoBkdAIrabvw3HaWgHS4poCEdAiY0mI0qH5HV9lChoBkdAbRJXYlIEsGgHTR4BaAhHQImR59Vmz0J1fZQoaAZHQGPa2Tot+ThoB03oA2gIR0CJoeCSzPa+dX2UKGgGR0Bh8RgRbr1NaAdN6ANoCEdAia7ImXw9aHV9lChoBkdAZIGcslLOA2gHTegDaAhHQIm7jD/EOy51fZQoaAZHQGBH8GTs6aNoB03oA2gIR0CJyI+jdpIudX2UKGgGR0Bl51mL9/BnaAdN6ANoCEdAidUpwbVBlnV9lChoBkdAYZptm+TNdWgHTegDaAhHQInht76YVqN1fZQoaAZHQGPw1Da4+bFoB03oA2gIR0CJ7+IeHSF5dX2UKGgGR0BmbtgWrOqvaAdN6ANoCEdAigF90q6OHXV9lChoBkfAP8JvP1L8JmgHS7FoCEdAigSAjIJZ4nV9lChoBkdAJBelKsdT52gHS69oCEdAigd9vjwQUnV9lChoBkfARvKbQTmGNGgHS6BoCEdAigo340uUU3V9lChoBkdAWbcsDnvDxmgHTegDaAhHQIoZbkXDWLB1fZQoaAZHwErb8iOearpoB0u8aAhHQIobgj0L+gl1fZQoaAZHwDQ5uIhyKeloB0umaAhHQIoeg176YVt1fZQoaAZHQDZtL0z0pVloB0uAaAhHQIof5K8L8aZ1fZQoaAZHwEa3CQ9zOopoB0uRaAhHQIohiemNzbN1fZQoaAZHQDcN97WuoxZoB0uqaAhHQIojcrXlKbt1fZQoaAZHQGkK+LFXJYFoB03fAWgIR0CKKhoSteUqdX2UKGgGR8A7pXKbKA8TaAdLuGgIR0CKLCzqKP4mdX2UKGgGR0BYHybtqpLmaAdN6ANoCEdAijimBvrGBHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1876, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.985, "ent_coef": 0.04, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo_lunarlander_unit1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b93f79bdf1177e42ad99f042ecfa753cdb536d4809e7ff491f179f7cbae15a2
3
+ size 146061
ppo_lunarlander_unit1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo_lunarlander_unit1/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5a57d96cb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5a57d96d40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5a57d96dd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5a57d96e60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5a57d96ef0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5a57d96f80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5a57d97010>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5a57d970a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5a57d97130>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5a57d971c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5a57d97250>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5a57d972e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f5a57d8f240>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 480568,
25
+ "_total_timesteps": 1300000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1685177035384027902,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACoK5j4Bv509xcZzPjO6ob6dDVY8nboGPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": 0.6305723076923078,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVKQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF78P1+RYA+MAWyUTegDjAF0lEdAhjIj0163RXV9lChoBkdAXcyH58BuGmgHTegDaAhHQIY+tayKNyZ1fZQoaAZHQFPZOY6XBxhoB03oA2gIR0CGTtR8+iaidX2UKGgGR0AcO5z5oGpuaAdNAgFoCEdAhlMFb/wRXnV9lChoBkdAV7JQ53kgfWgHTegDaAhHQIZmUUqQRwt1fZQoaAZHQFdnGhVU+9toB03oA2gIR0CGcu3VCojwdX2UKGgGR0BWyFYEGJN1aAdN6ANoCEdAhn+QqAjIJnV9lChoBkdAZP7n003wTmgHTegDaAhHQIaMRXwLE1l1fZQoaAZHQGUVyBK+SKZoB03oA2gIR0CGmNoB7u2JdX2UKGgGR0BY66x1PnB+aAdN6ANoCEdAhqVz1TR6W3V9lChoBkdAYT9PGhmGumgHTegDaAhHQIayLyWiUPh1fZQoaAZHQFdbNlAeJYVoB03oA2gIR0CGwa5bQkX2dX2UKGgGR0BY1qoZQ53laAdN6ANoCEdAhtPMcABDHHV9lChoBkdAYcdrWy1NQGgHTegDaAhHQIbjANI9TxZ1fZQoaAZHQF3Qw5NoJzFoB03oA2gIR0CG76faHsTndX2UKGgGR0BjBtgtvn8saAdN6ANoCEdAhvxSfL9uP3V9lChoBkdAYjzHNorWiGgHTegDaAhHQIcIxftx+8Z1fZQoaAZHQGRdLSE12q1oB03oA2gIR0CHFYkiUxEfdX2UKGgGR0BgNFbVz6rOaAdN6ANoCEdAhyJ55Rjz7XV9lChoBkdAYuGH9m6GxmgHTegDaAhHQIcwkEFGG211fZQoaAZHQF0vbMX7+DRoB03oA2gIR0CHQY9IPK+0dX2UKGgGR0BqBtM7EHdHaAdNgwJoCEdAh0ylzdUKiXV9lChoBkdAYGSONo8IRmgHTegDaAhHQIdabOX3QD51fZQoaAZHQDed0r9VFQVoB0v6aAhHQIddQKneizt1fZQoaAZHQF/JNY8uBc1oB03oA2gIR0CHadGe+VTrdX2UKGgGR0BdUlXeWOZLaAdN6ANoCEdAh3Zxgy/KyXV9lChoBkdAYYoAMlTm4mgHTegDaAhHQIeC/X/YJ3R1fZQoaAZHQGSzzmwJPZZoB03oA2gIR0CHj5ikO7QLdX2UKGgGR0BgBOI0qH45aAdN6ANoCEdAh5wp17pmmXV9lChoBkdAZwnwJgLJCGgHTegDaAhHQIermDjBEa51fZQoaAZHQFzHeWv8qF1oB03oA2gIR0CHvhupCKJmdX2UKGgGR0Bc7i4jKPn0aAdN6ANoCEdAh82GnO0LMXV9lChoBkdARUog7o0Q9WgHS5hoCEdAh89iUX531XV9lChoBkdAPOQ7LdN34mgHS7toCEdAh9K0YTCcgHV9lChoBkdAOQnpnpSrHWgHS6toCEdAh9SxpDeCTXV9lChoBkdAYbONiH6/I2gHTegDaAhHQIfhLBoEjgR1fZQoaAZHQD/qBEroW59oB0vLaAhHQIfjaQDFId51fZQoaAZHQDbiI0qH449oB0vOaAhHQIfl2KoAGSp1fZQoaAZHQGP/bgTAWSFoB03oA2gIR0CH8lrv9cbBdX2UKGgGR0A2BS9ugpSaaAdLzmgIR0CH9LEzfrKOdX2UKGgGR0BXQgWi1y/9aAdN6ANoCEdAiAEyWZ7Xx3V9lChoBkdATAXtnf2saWgHS8NoCEdAiAOH5aePJnV9lChoBkdAZSOHQhOgx2gHTegDaAhHQIgQRX+2mYV1fZQoaAZHQGoT56Uqx1RoB03CAmgIR0CIGwQarFOxdX2UKGgGR0BgvdFc6eXiaAdN6ANoCEdAiCx0Pxx1gnV9lChoBkdAZD1xz7uUlmgHTegDaAhHQIg+Dc/MW451fZQoaAZHQF+mpHI6r/9oB03oA2gIR0CISoraufVadX2UKGgGR0BeNAbMottiaAdN6ANoCEdAiFbzNt65XnV9lChoBkdAXlGWAwwj+2gHTegDaAhHQIhjp39rGip1fZQoaAZHQGNk0Kqn3tdoB03oA2gIR0CIcFiLl3hXdX2UKGgGR0BhexMg2ZRbaAdN6ANoCEdAiH0TsY2sJnV9lChoBkdAVnNmDlHSW2gHTegDaAhHQIiKClUIcBF1fZQoaAZHQFmQkwevIOpoB03oA2gIR0CImpuBMBZIdX2UKGgGR0BhPxKcurZKaAdN6ANoCEdAiK2xv3rUsnV9lChoBkdAYHYV0tAcDWgHTegDaAhHQIi7koKD0191fZQoaAZHQGCWWU8mrsBoB03oA2gIR0CIyGAPNFBqdX2UKGgGR0A/uQkHD766aAdLsGgIR0CIylXaJyhjdX2UKGgGR0AjQiV0Lc9GaAdL6mgIR0CIzPvNu+AVdX2UKGgGR0AlMvStvGZNaAdLsGgIR0CIzuyZ8a4udX2UKGgGR0BbC+cQRPGiaAdN6ANoCEdAiNuyWiUPhHV9lChoBkdAWWargflp5GgHTegDaAhHQIjoS28Zk091fZQoaAZHQGNdxJEpiJBoB03oA2gIR0CI9RBgNPP+dX2UKGgGR0AaWsNlRP43aAdLyWgIR0CI+It/4IrwdX2UKGgGR0BKTitRvWH2aAdLrGgIR0CI+oSElE7XdX2UKGgGR0Bha59w3o9taAdN6ANoCEdAiQmXGn4wiHV9lChoBkdAXR/VEuxrz2gHTegDaAhHQIkbi44Ia991fZQoaAZHQGDZNPxhDw9oB03oA2gIR0CJK9uOS4e+dX2UKGgGR0BhrPWxyGSIaAdN6ANoCEdAiTh01AJLNHV9lChoBkdAZGvg9eQdS2gHTegDaAhHQIlFN7pmmLt1fZQoaAZHQGK0gPVd5Y5oB03oA2gIR0CJUcEcKgIydX2UKGgGR0Bi/WTTvy9VaAdN0gFoCEdAiVcm9Htnf3V9lChoBkdAQHd01ZTya2gHS5NoCEdAiVjDlxOtXHV9lChoBkfAA17E5yU9p2gHS6doCEdAiVqc580DU3V9lChoBkdAYYgvIOpbU2gHTegDaAhHQIlnGQhfShJ1fZQoaAZHQGRQfIjnmq5oB03oA2gIR0CJc60rK/21dX2UKGgGR0Akbva11GLDaAdLm2gIR0CJdXDmbLEDdX2UKGgGR0BeVDNMXaakaAdN6ANoCEdAiYY3Mpw0f3V9lChoBkdAKD3SKFZgX2gHS6VoCEdAiYrDsUqQR3V9lChoBkdAIrabvw3HaWgHS4poCEdAiY0mI0qH5HV9lChoBkdAbRJXYlIEsGgHTR4BaAhHQImR59Vmz0J1fZQoaAZHQGPa2Tot+ThoB03oA2gIR0CJoeCSzPa+dX2UKGgGR0Bh8RgRbr1NaAdN6ANoCEdAia7ImXw9aHV9lChoBkdAZIGcslLOA2gHTegDaAhHQIm7jD/EOy51fZQoaAZHQGBH8GTs6aNoB03oA2gIR0CJyI+jdpIudX2UKGgGR0Bl51mL9/BnaAdN6ANoCEdAidUpwbVBlnV9lChoBkdAYZptm+TNdWgHTegDaAhHQInht76YVqN1fZQoaAZHQGPw1Da4+bFoB03oA2gIR0CJ7+IeHSF5dX2UKGgGR0BmbtgWrOqvaAdN6ANoCEdAigF90q6OHXV9lChoBkfAP8JvP1L8JmgHS7FoCEdAigSAjIJZ4nV9lChoBkdAJBelKsdT52gHS69oCEdAigd9vjwQUnV9lChoBkfARvKbQTmGNGgHS6BoCEdAigo340uUU3V9lChoBkdAWbcsDnvDxmgHTegDaAhHQIoZbkXDWLB1fZQoaAZHwErb8iOearpoB0u8aAhHQIobgj0L+gl1fZQoaAZHwDQ5uIhyKeloB0umaAhHQIoeg176YVt1fZQoaAZHQDZtL0z0pVloB0uAaAhHQIof5K8L8aZ1fZQoaAZHwEa3CQ9zOopoB0uRaAhHQIohiemNzbN1fZQoaAZHQDcN97WuoxZoB0uqaAhHQIojcrXlKbt1fZQoaAZHQGkK+LFXJYFoB03fAWgIR0CKKhoSteUqdX2UKGgGR8A7pXKbKA8TaAdLuGgIR0CKLCzqKP4mdX2UKGgGR0BYHybtqpLmaAdN6ANoCEdAijimBvrGBHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 1876,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.995,
82
+ "gae_lambda": 0.985,
83
+ "ent_coef": 0.04,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo_lunarlander_unit1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:407207d330a1411b9cc4a6c615ab87c3c0537334af93cae5bdf00ef33b3eaeca
3
+ size 87929
ppo_lunarlander_unit1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99e68fdab7a8d5bead38ffd19ec74bf4425df524e1d48caa96a05436d57d7aa8
3
+ size 43329
ppo_lunarlander_unit1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_lunarlander_unit1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (181 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 76.96568323148531, "std_reward": 108.55999020693802, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-27T08:58:20.976484"}