kodemaniak commited on
Commit
16ace51
·
verified ·
1 Parent(s): 01675a3
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 258.14 +/- 21.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7aee29816200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7aee29816290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7aee29816320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7aee298163b0>", "_build": "<function ActorCriticPolicy._build at 0x7aee29816440>", "forward": "<function ActorCriticPolicy.forward at 0x7aee298164d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7aee29816560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7aee298165f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7aee29816680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7aee29816710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7aee298167a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7aee29816830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7aedcb4e69c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736079514409023247, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALrAI74fMfm77qUzuAIE/bXpZ1k9XZpbNwAAgD8AAIA/gEsqPStQ8j06Eow9GSJRviNhHj2DvGW9AAAAAAAAAACNbri94TSGugKg6bcmGtay7Gknumg0CDcAAAAAAACAP3NiFb5ZWnk//gq8vjq4Eb8VSGy+d+SovQAAAAAAAAAAhZSUvpoahj+w09++1+n3vrQBtL4A6C69AAAAAAAAAADtsHY+dNjTPtZiW7vOV52+avsPPfKCM70AAAAAAAAAAKaQFj70cqM+BIqJvQljjL7MZr87aj7mPAAAAAAAAAAAGthxPaQi4T7mFm07z2yzvuvSJTxaEaO9AAAAAAAAAADa2Z4+SNaHPe3EW7u2ije6cqGuPmxKoToAAIA/AACAP6DMez6p5TK8fhRnu0UfDzmSBZe9nG7LOQAAgD8AAIA/IJE3Pt4mtD/8lQA/u1zZvsJ8GT4bU7g8AAAAAAAAAAAQoIc+ceJ6PCRNLL6vkOg8eLvlPpS+QL4AAAAAAAAAALOTpD1FC2c/ttYdPlemBr/vqn09M3WOPAAAAAAAAAAAWgZIvs644LxBpCC7gbWHuXjHTD6g0HQ6AACAPwAAgD+NB5M9NiQyPUwCKb1g1zu+OQMLvIap07wAAAAAAAAAAPM5Ej4pUxQ70Y6DPAwOHbsEcZI9zWZ7vQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIoy+cpb2WMAWyUS/uMAXSUR0CcQVEeyRjjdX2UKGgGR0BwyuknCwbEaAdNCAFoCEdAnJz/YraufXV9lChoBkdAX+6ckMTewmgHTegDaAhHQJyeh2IO6NF1fZQoaAZHQHG4MsH0K7ZoB0veaAhHQJyesI4VARl1fZQoaAZHQG/Vr4WUKRdoB0vjaAhHQJyeuQ0XP7h1fZQoaAZHQHBt029+PR1oB0v5aAhHQJyfK87IT5B1fZQoaAZHQG+OZ9NN8E5oB0v6aAhHQJyfcCSzPbB1fZQoaAZHQHAL5GKAJ9loB0vmaAhHQJygzpRoAXF1fZQoaAZHQHLGMaCL/CJoB00sAWgIR0CcoQdgOSW7dX2UKGgGR0BvzW0Re1KHaAdL22gIR0CcoQcuJ1q4dX2UKGgGR0BsALuhK15TaAdNAAFoCEdAnKGXLaEi+3V9lChoBkdAbyPilSCOFWgHS9xoCEdAnKGiYCyQgnV9lChoBkdAbmUMb3oLX2gHTQoBaAhHQJyh+5AhStN1fZQoaAZHQG2TbWmP5pJoB00fAWgIR0CcouzVtoBadX2UKGgGR0BwU9A3T/hmaAdNMgFoCEdAnKMUDU3GXHV9lChoBkdARlj6tT1kD2gHS7doCEdAnKRNtIkJKXV9lChoBkdAcXGVe8f3e2gHS8toCEdAnKRr+Lm6oXV9lChoBkdAb43wCr92o2gHS+NoCEdAnKT10tAcDXV9lChoBkdAcVlIY3vQW2gHS8doCEdAnKUE4//vOXV9lChoBkdAcw1a6STyKGgHS8hoCEdAnKaZLVWjoXV9lChoBkdAcxJDIBBAwGgHS+FoCEdAnKdk7GNrCXV9lChoBkdAcIehpg1FY2gHS+loCEdAnKdtBrvb5HV9lChoBkdAblZ+bVjI72gHS9loCEdAnKfKz3RG+nV9lChoBkdAcfKUXYUWVWgHS8xoCEdAnKfUroW56XV9lChoBkdAcW0+0PYnOWgHTUgBaAhHQJyoH2tdRix1fZQoaAZHQHBPdcbBGhFoB0vtaAhHQJyqDqhUR4B1fZQoaAZHQG2856dDpkhoB0voaAhHQJyrWU0Nz8x1fZQoaAZHQE66T8pCrtFoB0vRaAhHQJyrYoLG7z11fZQoaAZHQHDmrIYFaB9oB00GAWgIR0CcrJM9bHIZdX2UKGgGR0Bws1O/L1VYaAdL/GgIR0CcrN5HmRvFdX2UKGgGR0BtddNahYeUaAdNiwFoCEdAnK2gkX1rZnV9lChoBkdAcM8OearmyWgHS9xoCEdAnK27C3w1BXV9lChoBkdAcFEj3VTaTWgHS81oCEdAnK4Q71ZkkXV9lChoBkdAcRtWeHzpYGgHS9BoCEdAnK6aXSjQA3V9lChoBkdAa96KXv6TGGgHS/FoCEdAnK+k8eS0SnV9lChoBkdAb8ZxdY4hlmgHS+9oCEdAnK/69sabWnV9lChoBkdAXnfgR9PUKGgHTegDaAhHQJywXo+wC8x1fZQoaAZHQHE4rm2b5M1oB0vcaAhHQJyxaqzZ6D51fZQoaAZHQG0JkvsZ5zJoB01HAWgIR0CcsgRc/t6YdX2UKGgGR0BdomJFb3XaaAdN6ANoCEdAnLIclPacqnV9lChoBkdANacw5/9YOmgHS9doCEdAnLJr961LJ3V9lChoBkdAcg4QyhzvJGgHS9doCEdAnLNgc5sCT3V9lChoBkdAcEAuDBdld2gHTQEBaAhHQJyzoh3aBZp1fZQoaAZHQHCNI6r/82toB0vLaAhHQJy0ALa24NJ1fZQoaAZHQHFSXssxwhpoB0vRaAhHQJy0FY/3WWh1fZQoaAZHQG9fuXNTtLNoB0vmaAhHQJy1OJtSAH51fZQoaAZHQHDgmyon8bdoB0vUaAhHQJy2er8zhxZ1fZQoaAZHQHDDwuuieupoB00uAWgIR0CctsRjz7MxdX2UKGgGR0Bt38ulGgBcaAdL+2gIR0Ccts96kZaWdX2UKGgGR0BtN7fNzKcNaAdL22gIR0CctyAood+5dX2UKGgGR0BvcauhbnoxaAdLz2gIR0CcuGNzr/sFdX2UKGgGR0Bwmj9fkWAPaAdNAAFoCEdAnLjwxSHdoHV9lChoBkdAcWT3LFGXomgHS91oCEdAnLmVZ9uxbHV9lChoBkdAcS+PK+zt1WgHS9RoCEdAnLtCflIVd3V9lChoBkdAcm3ornTy8WgHS89oCEdAnLtsh1Tzd3V9lChoBkdAcmehQWN3n2gHS/poCEdAnLtuGCZnc3V9lChoBkdAbWVWWhRIjGgHS95oCEdAnLyxD5TIenV9lChoBkdAYtY5Jbt7bGgHTegDaAhHQJy9dgnc+JR1fZQoaAZHQEkuZUkv9LpoB0vcaAhHQJy/Wt2cJ+l1fZQoaAZHQHBto5HVf/poB0vgaAhHQJzBWhEjPfN1fZQoaAZHQHFxKMefZmJoB00lAWgIR0CcwiyBTXJ6dX2UKGgGR0BLrL8Jlar4aAdLwGgIR0Ccws7HQyAQdX2UKGgGR0BsPICwKSgXaAdNMwFoCEdAnMLxp+MIeHV9lChoBkdAcAk7Dl5nlGgHS9toCEdAnMOMwg1WKnV9lChoBkdAYwWYE4ecQWgHTegDaAhHQJzEzQXyiEh1fZQoaAZHQHBbymygPEtoB0v6aAhHQJzGUzguRLd1fZQoaAZHQHHaoW+GoJloB01uAWgIR0CcxxdxhlUZdX2UKGgGR0B0E89lmOENaAdLzGgIR0CcyAvhqCYkdX2UKGgGR0BudCWVu76IaAdNCgFoCEdAnMiJdSl3yXV9lChoBkdActGl8w5/9mgHTYkBaAhHQJzJfjKgZjx1fZQoaAZHQHPqMvAXVLBoB0vaaAhHQJzKNxp+MIh1fZQoaAZHQHLhCAlOXVtoB0vnaAhHQJzKg5lvqC91fZQoaAZHQHE8YVuaWopoB0v8aAhHQJzMAjJMg2Z1fZQoaAZHQG8p9yT6i0xoB026AWgIR0CczC55qubJdX2UKGgGR0Bt/8EidJ8OaAdL7mgIR0CczNEmICU5dX2UKGgGR0ByBZipeeFtaAdNIAFoCEdAnNA8RHww03V9lChoBkdAcovLt/nW8WgHTQwBaAhHQJzQWaOPvKF1fZQoaAZHQG+Dolt0mt1oB0v8aAhHQJzQ2g8KXv91fZQoaAZHQHCEyXt0FKVoB0vtaAhHQJzR1EJBw/B1fZQoaAZHQHH1eUliSaFoB0viaAhHQJzUf/sE7nx1fZQoaAZHQHDMhyGSIP9oB0vqaAhHQJzVooBq9Gt1fZQoaAZHQHFY48QqZtxoB00GAWgIR0Cc1cpt78ekdX2UKGgGR0BjZ3GhmGucaAdN6ANoCEdAnNYlfE4vOHV9lChoBkdANcKNhmXgL2gHS7doCEdAnNdonv2GqXV9lChoBkdAYyqxgy/KyWgHTegDaAhHQJzYovoNd7h1fZQoaAZHQGxzcZccENhoB0vsaAhHQJzZ55LRKHx1fZQoaAZHQGKmMCDEm6ZoB03oA2gIR0Cc2glJYkmhdX2UKGgGR0BxU5S0jTrnaAdL2mgIR0Cc2jzoEB8ydX2UKGgGR0BeihOpKjBVaAdN6ANoCEdAnNsS6H0sfHV9lChoBkdAcljVlwtJ4GgHTUMBaAhHQJzcVGKAJ9l1fZQoaAZHQG3jA2Ifr8loB03sAWgIR0Cc3JJ7sv7FdX2UKGgGR0BwC9r8BMi9aAdN7QJoCEdAnNzNRR/EwXV9lChoBkdAYbCtlqagEmgHTegDaAhHQJzdVSEUTL51fZQoaAZHQHBrry6MBIZoB0v+aAhHQJzevYChew91fZQoaAZHQG7N0jLSuyNoB0v5aAhHQJze3zND+it1fZQoaAZHQHG6veUILPVoB00vAWgIR0Cc309AX2ugdX2UKGgGR0BwYHOObRWtaAdL92gIR0Cc4PEXcgyNdX2UKGgGR0ByUuY4Qz1saAdL2WgIR0Cc4RE12q1gdX2UKGgGR0ByUXlfZ26kaAdL1GgIR0Cc4TqMWGh3dX2UKGgGR0Bvyr/n4fwJaAdNUwFoCEdAnOFcLfDUE3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ec529e9f24320ed6a2ed65a11f74830071021b5add9a57bcbe34911a33937b6
3
+ size 147939
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7aee29816200>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7aee29816290>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7aee29816320>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7aee298163b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7aee29816440>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7aee298164d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7aee29816560>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7aee298165f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7aee29816680>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7aee29816710>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7aee298167a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7aee29816830>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7aedcb4e69c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1736079514409023247,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALrAI74fMfm77qUzuAIE/bXpZ1k9XZpbNwAAgD8AAIA/gEsqPStQ8j06Eow9GSJRviNhHj2DvGW9AAAAAAAAAACNbri94TSGugKg6bcmGtay7Gknumg0CDcAAAAAAACAP3NiFb5ZWnk//gq8vjq4Eb8VSGy+d+SovQAAAAAAAAAAhZSUvpoahj+w09++1+n3vrQBtL4A6C69AAAAAAAAAADtsHY+dNjTPtZiW7vOV52+avsPPfKCM70AAAAAAAAAAKaQFj70cqM+BIqJvQljjL7MZr87aj7mPAAAAAAAAAAAGthxPaQi4T7mFm07z2yzvuvSJTxaEaO9AAAAAAAAAADa2Z4+SNaHPe3EW7u2ije6cqGuPmxKoToAAIA/AACAP6DMez6p5TK8fhRnu0UfDzmSBZe9nG7LOQAAgD8AAIA/IJE3Pt4mtD/8lQA/u1zZvsJ8GT4bU7g8AAAAAAAAAAAQoIc+ceJ6PCRNLL6vkOg8eLvlPpS+QL4AAAAAAAAAALOTpD1FC2c/ttYdPlemBr/vqn09M3WOPAAAAAAAAAAAWgZIvs644LxBpCC7gbWHuXjHTD6g0HQ6AACAPwAAgD+NB5M9NiQyPUwCKb1g1zu+OQMLvIap07wAAAAAAAAAAPM5Ej4pUxQ70Y6DPAwOHbsEcZI9zWZ7vQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVBQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIoy+cpb2WMAWyUS/uMAXSUR0CcQVEeyRjjdX2UKGgGR0BwyuknCwbEaAdNCAFoCEdAnJz/YraufXV9lChoBkdAX+6ckMTewmgHTegDaAhHQJyeh2IO6NF1fZQoaAZHQHG4MsH0K7ZoB0veaAhHQJyesI4VARl1fZQoaAZHQG/Vr4WUKRdoB0vjaAhHQJyeuQ0XP7h1fZQoaAZHQHBt029+PR1oB0v5aAhHQJyfK87IT5B1fZQoaAZHQG+OZ9NN8E5oB0v6aAhHQJyfcCSzPbB1fZQoaAZHQHAL5GKAJ9loB0vmaAhHQJygzpRoAXF1fZQoaAZHQHLGMaCL/CJoB00sAWgIR0CcoQdgOSW7dX2UKGgGR0BvzW0Re1KHaAdL22gIR0CcoQcuJ1q4dX2UKGgGR0BsALuhK15TaAdNAAFoCEdAnKGXLaEi+3V9lChoBkdAbyPilSCOFWgHS9xoCEdAnKGiYCyQgnV9lChoBkdAbmUMb3oLX2gHTQoBaAhHQJyh+5AhStN1fZQoaAZHQG2TbWmP5pJoB00fAWgIR0CcouzVtoBadX2UKGgGR0BwU9A3T/hmaAdNMgFoCEdAnKMUDU3GXHV9lChoBkdARlj6tT1kD2gHS7doCEdAnKRNtIkJKXV9lChoBkdAcXGVe8f3e2gHS8toCEdAnKRr+Lm6oXV9lChoBkdAb43wCr92o2gHS+NoCEdAnKT10tAcDXV9lChoBkdAcVlIY3vQW2gHS8doCEdAnKUE4//vOXV9lChoBkdAcw1a6STyKGgHS8hoCEdAnKaZLVWjoXV9lChoBkdAcxJDIBBAwGgHS+FoCEdAnKdk7GNrCXV9lChoBkdAcIehpg1FY2gHS+loCEdAnKdtBrvb5HV9lChoBkdAblZ+bVjI72gHS9loCEdAnKfKz3RG+nV9lChoBkdAcfKUXYUWVWgHS8xoCEdAnKfUroW56XV9lChoBkdAcW0+0PYnOWgHTUgBaAhHQJyoH2tdRix1fZQoaAZHQHBPdcbBGhFoB0vtaAhHQJyqDqhUR4B1fZQoaAZHQG2856dDpkhoB0voaAhHQJyrWU0Nz8x1fZQoaAZHQE66T8pCrtFoB0vRaAhHQJyrYoLG7z11fZQoaAZHQHDmrIYFaB9oB00GAWgIR0CcrJM9bHIZdX2UKGgGR0Bws1O/L1VYaAdL/GgIR0CcrN5HmRvFdX2UKGgGR0BtddNahYeUaAdNiwFoCEdAnK2gkX1rZnV9lChoBkdAcM8OearmyWgHS9xoCEdAnK27C3w1BXV9lChoBkdAcFEj3VTaTWgHS81oCEdAnK4Q71ZkkXV9lChoBkdAcRtWeHzpYGgHS9BoCEdAnK6aXSjQA3V9lChoBkdAa96KXv6TGGgHS/FoCEdAnK+k8eS0SnV9lChoBkdAb8ZxdY4hlmgHS+9oCEdAnK/69sabWnV9lChoBkdAXnfgR9PUKGgHTegDaAhHQJywXo+wC8x1fZQoaAZHQHE4rm2b5M1oB0vcaAhHQJyxaqzZ6D51fZQoaAZHQG0JkvsZ5zJoB01HAWgIR0CcsgRc/t6YdX2UKGgGR0BdomJFb3XaaAdN6ANoCEdAnLIclPacqnV9lChoBkdANacw5/9YOmgHS9doCEdAnLJr961LJ3V9lChoBkdAcg4QyhzvJGgHS9doCEdAnLNgc5sCT3V9lChoBkdAcEAuDBdld2gHTQEBaAhHQJyzoh3aBZp1fZQoaAZHQHCNI6r/82toB0vLaAhHQJy0ALa24NJ1fZQoaAZHQHFSXssxwhpoB0vRaAhHQJy0FY/3WWh1fZQoaAZHQG9fuXNTtLNoB0vmaAhHQJy1OJtSAH51fZQoaAZHQHDgmyon8bdoB0vUaAhHQJy2er8zhxZ1fZQoaAZHQHDDwuuieupoB00uAWgIR0CctsRjz7MxdX2UKGgGR0Bt38ulGgBcaAdL+2gIR0Ccts96kZaWdX2UKGgGR0BtN7fNzKcNaAdL22gIR0CctyAood+5dX2UKGgGR0BvcauhbnoxaAdLz2gIR0CcuGNzr/sFdX2UKGgGR0Bwmj9fkWAPaAdNAAFoCEdAnLjwxSHdoHV9lChoBkdAcWT3LFGXomgHS91oCEdAnLmVZ9uxbHV9lChoBkdAcS+PK+zt1WgHS9RoCEdAnLtCflIVd3V9lChoBkdAcm3ornTy8WgHS89oCEdAnLtsh1Tzd3V9lChoBkdAcmehQWN3n2gHS/poCEdAnLtuGCZnc3V9lChoBkdAbWVWWhRIjGgHS95oCEdAnLyxD5TIenV9lChoBkdAYtY5Jbt7bGgHTegDaAhHQJy9dgnc+JR1fZQoaAZHQEkuZUkv9LpoB0vcaAhHQJy/Wt2cJ+l1fZQoaAZHQHBto5HVf/poB0vgaAhHQJzBWhEjPfN1fZQoaAZHQHFxKMefZmJoB00lAWgIR0CcwiyBTXJ6dX2UKGgGR0BLrL8Jlar4aAdLwGgIR0Ccws7HQyAQdX2UKGgGR0BsPICwKSgXaAdNMwFoCEdAnMLxp+MIeHV9lChoBkdAcAk7Dl5nlGgHS9toCEdAnMOMwg1WKnV9lChoBkdAYwWYE4ecQWgHTegDaAhHQJzEzQXyiEh1fZQoaAZHQHBbymygPEtoB0v6aAhHQJzGUzguRLd1fZQoaAZHQHHaoW+GoJloB01uAWgIR0CcxxdxhlUZdX2UKGgGR0B0E89lmOENaAdLzGgIR0CcyAvhqCYkdX2UKGgGR0BudCWVu76IaAdNCgFoCEdAnMiJdSl3yXV9lChoBkdActGl8w5/9mgHTYkBaAhHQJzJfjKgZjx1fZQoaAZHQHPqMvAXVLBoB0vaaAhHQJzKNxp+MIh1fZQoaAZHQHLhCAlOXVtoB0vnaAhHQJzKg5lvqC91fZQoaAZHQHE8YVuaWopoB0v8aAhHQJzMAjJMg2Z1fZQoaAZHQG8p9yT6i0xoB026AWgIR0CczC55qubJdX2UKGgGR0Bt/8EidJ8OaAdL7mgIR0CczNEmICU5dX2UKGgGR0ByBZipeeFtaAdNIAFoCEdAnNA8RHww03V9lChoBkdAcovLt/nW8WgHTQwBaAhHQJzQWaOPvKF1fZQoaAZHQG+Dolt0mt1oB0v8aAhHQJzQ2g8KXv91fZQoaAZHQHCEyXt0FKVoB0vtaAhHQJzR1EJBw/B1fZQoaAZHQHH1eUliSaFoB0viaAhHQJzUf/sE7nx1fZQoaAZHQHDMhyGSIP9oB0vqaAhHQJzVooBq9Gt1fZQoaAZHQHFY48QqZtxoB00GAWgIR0Cc1cpt78ekdX2UKGgGR0BjZ3GhmGucaAdN6ANoCEdAnNYlfE4vOHV9lChoBkdANcKNhmXgL2gHS7doCEdAnNdonv2GqXV9lChoBkdAYyqxgy/KyWgHTegDaAhHQJzYovoNd7h1fZQoaAZHQGxzcZccENhoB0vsaAhHQJzZ55LRKHx1fZQoaAZHQGKmMCDEm6ZoB03oA2gIR0Cc2glJYkmhdX2UKGgGR0BxU5S0jTrnaAdL2mgIR0Cc2jzoEB8ydX2UKGgGR0BeihOpKjBVaAdN6ANoCEdAnNsS6H0sfHV9lChoBkdAcljVlwtJ4GgHTUMBaAhHQJzcVGKAJ9l1fZQoaAZHQG3jA2Ifr8loB03sAWgIR0Cc3JJ7sv7FdX2UKGgGR0BwC9r8BMi9aAdN7QJoCEdAnNzNRR/EwXV9lChoBkdAYbCtlqagEmgHTegDaAhHQJzdVSEUTL51fZQoaAZHQHBrry6MBIZoB0v+aAhHQJzevYChew91fZQoaAZHQG7N0jLSuyNoB0v5aAhHQJze3zND+it1fZQoaAZHQHG6veUILPVoB00vAWgIR0Cc309AX2ugdX2UKGgGR0BwYHOObRWtaAdL92gIR0Cc4PEXcgyNdX2UKGgGR0ByUuY4Qz1saAdL2WgIR0Cc4RE12q1gdX2UKGgGR0ByUXlfZ26kaAdL1GgIR0Cc4TqMWGh3dX2UKGgGR0Bvyr/n4fwJaAdNUwFoCEdAnOFcLfDUE3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f241ec98211e478ee9cd6255b9f5c7a14fe3a89c3f822ac1697e8c857ed1eb6
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38296c78e6b638921233ab4751deaf1b6c2853ead9e9f2e8d86b574b070d5527
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (164 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 258.13918, "std_reward": 21.612160663712206, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-05T12:57:21.594695"}