File size: 7,394 Bytes
dcfc1a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
license: apache-2.0
language:
- en
base_model:
- meta-llama/Llama-3.1-8B-instruct
pipeline_tag: text-generation
tags:
- lora
- adapter
- writing
- CoT
---
# Merged-Llama-Adapters-317-320

A merged LoRA adapter combining four fine-tuned adapters (317-320) for the Llama-3.1-8B language model.

## Model Details

- Base Model: meta-llama/Llama-3.1-8B-instruct
- Adaptation Method: Merged LoRA
- Source Adapters:
  - https://huggingface.co/kevin009/llama313
  - https://huggingface.co/kevin009/llama314
  - https://huggingface.co/kevin009/llama315
  - https://huggingface.co/kevin009/llama316
  - https://huggingface.co/kevin009/llama317
  - https://huggingface.co/kevin009/llama318
  - https://huggingface.co/kevin009/llama319
  - https://huggingface.co/kevin009/llama320
  - https://huggingface.co/kevin009/llama326
  - https://huggingface.co/kevin009/llama324

## Merger Configuration

### Source Adapters

All source adapters share the following configuration:
- Rank (r): 16
- Alpha: 16
- Target Modules:
  - q_proj (Query projection)
  - k_proj (Key projection)
  - v_proj (Value projection)
  - o_proj (Output projection)
  - up_proj (Upsampling projection)
  - down_proj (Downsampling projection)
  - gate_proj (Gate projection)

### Merger Details

- Merger Method: Linear interpolation
- Merger Weights: Equal weights (0.25) for each adapter
- Combined Rank: 16 (maintained from source adapters)

## Usage

This merged adapter must be used with the base Llama-3.1-8B-instruct model.

### Loading the Model

```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load base model
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-instruct")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-instruct")

# Load merged LoRA adapter
model = PeftModel.from_pretrained(base_model, "path_to_merged_adapter")
```

## Limitations and Biases

- This merged adapter inherits limitations and biases from:
  - The base Llama-3.1-8B-instruct model
  - All four source adapters
- The merging process may result in:
  - Potential loss of specialized capabilities from individual adapters
  - Averaged behavior across different adapter specializations
  - Possible interference between adapter weights

## Merging Process

The adapters were merged using the following approach:
1. Linear interpolation of adapter weights
2. Equal weighting (0.25) applied to each source adapter
3. Preservation of original LoRA rank and architecture

### Method Used

The adapters were merged using PEFT (Parameter-Efficient Fine-Tuning) library's weighted adapter combination feature. The process combines multiple LoRA adapters using linear interpolation with specified weights.

### Step-by-Step Merging Process

1. Load the base model and initial adapter:
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

# Load first adapter as base
peft_model = PeftModel.from_pretrained(model, "llama319", adapter_name="llama319")
```

2. Load additional adapters:
```python
# Load remaining adapters
peft_model.load_adapter("llama320", adapter_name="llama320")
peft_model.load_adapter("llama318", adapter_name="llama318")
peft_model.load_adapter("llama317", adapter_name="llama317")
peft_model.load_adapter("llama313", adapter_name="llama313")
peft_model.load_adapter("llama314", adapter_name="llama314")
peft_model.load_adapter("llama315", adapter_name="llama315")
peft_model.load_adapter("llama316", adapter_name="llama316")
```

3. Configure and execute the merger:
```python
# Load F32 models (higher precision)
peft_model.load_adapter("llama324", adapter_name="llama324")
peft_model.load_adapter("llama320", adapter_name="llama320")
peft_model.load_adapter("llama318", adapter_name="llama318")
peft_model.load_adapter("llama317", adapter_name="llama317")

# Load BF16 models
peft_model.load_adapter("llama316", adapter_name="llama316")
peft_model.load_adapter("llama315", adapter_name="llama315")
peft_model.load_adapter("llama314", adapter_name="llama314")
peft_model.load_adapter("llama313", adapter_name="llama313")

# Define adapters and weights
# F32 models weighted slightly higher due to higher precision
f32_adapters = ["llama319", "llama324", "llama320", "llama318", "llama317"]
bf16_adapters = ["llama316", "llama315", "llama314", "llama313"]

adapters = f32_adapters + bf16_adapters
weights = [1.2] * len(f32_adapters) + [0.8] * len(bf16_adapters)  # Adjusted weights based on precision

peft_model.add_weighted_adapter(adapters, weights, "merge", combination_type="ties", density=0.2)
peft_model.set_adapter("merge")
peft_model.save_pretrained("merged")

```

### Key Parameters

- `combination_type="ties"`: Uses the TIES (Task Interference Edge Selection) method for combining adapters
- `density=0.2`: Controls the sparsity of the merged weights


### Notes

- The order of loading adapters may affect the final result
- Equal weights were chosen to maintain balanced influence from each adapter
- The merged adapter maintains the same architecture and rank as the original adapters
- While this adapter merges multiple fine-tunes, each component was developed as part of independent research efforts to explore and language model capabilities as part of R&D process.


## Datasets

- Not yet released, but should be released after evaluation has completed.
- Creating dataset alone tooks more than 3 month for creating 30k pairs dataset.
- Only 1k pairs example considered to be synthetic dataset, the rest half synthetic and human written text.

### Use Cases

- This merged adapter can be used for a wide range of tasks, including but not limited to:
  - Accessibility
  - Revision & Editing
  - instruction-following use with xml tags
  - Thinking & reasoning with xml tag of <thinking> and </thinking>, if being asked i the instructions.
  

These Models not optimized for code, math, or other specialized tasks that need Perefence Optimization.

## Why SFT Instead of RLHF/DPO?
- RLHF and DPO approaches often lead to vocabulary limitations and overfitting due to their optimization objectives


## Why Multiple Adapters?
- Resource Issue: Placing the training into smaller adapters requires less GPU memory and compute time while gives more control over the training process.
- Iterative Development: Each adapter can be developed and tested independently
- Training Infrastructure: The complete fine-tuning process was conducted across multiple sessions, totaling over 100 hours on high-end GPUs (H100, H200, or L40s)
- Flexibility: Multiple adapters allow for different combinations or weightings


## License

Licensed under Apache 2.0 License.

This merged adapter is part of independent individual research work. While the code is open-source under the Apache 2.0 license, please note:

- You are free to use, modify, and distribute this adapter following the Apache 2.0 license terms
- This work is provided "as is" without warranties or conditions of any kind
- This is an independent research project and not affiliated with any organization
- Attribution is appreciated but not required
- For full license details, see: https://www.apache.org/licenses/LICENSE-2.0