File size: 1,631 Bytes
e9a0891
b83cbae
 
 
 
 
 
 
e9a0891
 
b83cbae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a0891
b83cbae
e9a0891
b83cbae
e9a0891
b83cbae
e9a0891
b83cbae
e9a0891
b83cbae
 
 
 
 
 
 
 
 
 
e9a0891
b83cbae
e9a0891
b83cbae
 
 
 
 
 
 
e9a0891
 
b83cbae
e9a0891
b83cbae
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mt5-base-en-ru
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-base-en-ru

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8401
- Bleu: 12.2867
- Gen Len: 17.8712

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 14
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 140
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.1469        | 1.0   | 11019 | 1.0554          | 10.1262 | 17.8974 |
| 1.0112        | 2.0   | 22038 | 0.9529          | 10.9674 | 17.8698 |
| 0.937         | 3.0   | 33057 | 0.8913          | 11.6301 | 17.8687 |
| 0.8809        | 4.0   | 44076 | 0.8545          | 11.9517 | 17.8833 |
| 0.8501        | 5.0   | 55095 | 0.8401          | 12.2867 | 17.8712 |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.2+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0