--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-v3 results: [] --- # distilhubert-finetuned-gtzan-v3 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7165 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0466 | 1.0 | 57 | 0.8249 | 0.79 | | 0.0332 | 2.0 | 114 | 0.6831 | 0.86 | | 0.0109 | 3.0 | 171 | 0.7949 | 0.82 | | 0.006 | 4.0 | 228 | 0.7148 | 0.86 | | 0.005 | 5.0 | 285 | 0.8089 | 0.84 | | 0.0032 | 6.0 | 342 | 0.7125 | 0.85 | | 0.0025 | 7.0 | 399 | 0.7267 | 0.87 | | 0.0028 | 8.0 | 456 | 0.6992 | 0.87 | | 0.0021 | 9.0 | 513 | 0.7227 | 0.86 | | 0.0021 | 10.0 | 570 | 0.7165 | 0.87 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3